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Last time, we refreshed our basic OLS
knowledge

Today we continue and look at more
than one explanatory variable, and
associated problems

But, why more than one variable?

Like, how many other variables?

And, above all: which ones ? 

Recap 2

We will remember what we meant by a model.
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Remember what we
learned about the STAR
Experiment

What is the causal
impact of class size on
test scores?

?

We use a model to
order our thoughts
about how a causal
impact is determined.

Back to the STAR Experiment
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Multiple Variables

Let's augment our model with more variables:
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Spot the Di�erence 
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Omitted-variable bias
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Omitted-variable bias

Omitted-variable bias (OVB) arises when we omit a variable that

1. affects our outcome variable 

2. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of .
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Omitted-variable bias

Omitted-variable bias (OVB) arises when we omit a variable that

1. affects our outcome variable 

2. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of .

Note: OVB Is not exclusive to multiple linear regression, but it does require multiple
variables affect .
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Omitted-variable bias

Example

Let's imagine a simple model for the amount individual  gets paid

where

 gives 's years of schooling
 denotes an indicator variable for whether individual  is male.

thus

: the returns to an additional year of schooling (ceteris paribus)
: the premium for being male (ceteris paribus)  

If , then there is discrimination against women—receiving less pay based upon
gender.
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Omitted-variable bias

Example, continued

From our population model

If a study focuses on the relationship between pay and schooling, i.e.,

where .

We used our exogeneity assumption to derive OLS' unbiasedness. But even if , it

is not true that  so long as .

Specifically, .
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Omitted-variable bias

Example, continued

From our population model

If a study focuses on the relationship between pay and schooling, i.e.,

where .

We used our exogeneity assumption to derive OLS' unbiasedness. But even if , it

is not true that  so long as .

Specifically, . Now OLS is biased.
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Omitted-variable bias

Example, continued

Let's try to see this result graphically.

The population model:

Our regression model that suffers from omitted-variable bias:

Finally, imagine that women, on average, receive more schooling than men.
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Omitted-variable bias

Example, continued: 

The relationship between pay and schooling.
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Omitted-variable bias

Example, continued: 

Biased regression estimate: 
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Omitted-variable bias

Example, continued: 

Recalling the omitted variable: Gender female and male

11 / 68

Omitted-variable bias

Example, continued: 

Recalling the omitted variable: Gender female and male
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Omitted-variable bias

Example, continued: 

Unbiased regression estimate: 
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Omitted-variable bias

Solutions

1. Don't omit variables 

2. Instrumental variables and two-stage least squares (coming soon): If we could find
something that only affects  but not the omitted variable, we can make progress!

3. Use multiple observations for the same unit : panel data.

Warning: There are situations in which neither solution is possible.
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Omitted-variable bias

Solutions

1. Don't omit variables 

2. Instrumental variables and two-stage least squares (coming soon): If we could find
something that only affects  but not the omitted variable, we can make progress!

3. Use multiple observations for the same unit : panel data.

Warning: There are situations in which neither solution is possible.

1. Proceed with caution (sometimes you can sign the bias).

2. The key is to have a mental map of should belong to the model.
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Interpreting coe�cients
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Interpreting coe�cients

Continuous variables

Consider the relationship

where

 is a continuous variable measuring an individual's pay

 is a continuous variable that measures years of education

15 / 68

Interpreting coe�cients

Interpretations

: the -intercept, i.e.,  when 
: the expected increase in  for a one-unit increase in 
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Interpreting coe�cients

Continuous variables

Consider the model

Differentiate the model:
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Task 1: Interpretation (4 minutes)

1. Load the wage1  dataset from the wooldridge  package. you may have to install this first.

2. Run skimr::skim  on the dataset to get an overview. what is the fraciton of nonwhite in
the data?

3. Regressing wage on education and tenure, what is the interpretation of the tenure
coefficient? You may need to consult ?wage1  here.
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Interpreting coe�cients

Categorical variables

Consider the relationship

where

 is a continuous variable measuring an individual's pay

 is a binary/indicator variable taking  when  is female
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Interpreting coe�cients

Interpretations

: the expected  for males (i.e., when )
: the expected difference in  between females and males

: the expected  for females
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Interpreting coe�cients

Categorical variables

Derivations
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Interpreting coe�cients

Categorical variables

Derivations
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Interpreting coe�cients

Categorical variables

Derivations

Note: If there are no other variables to condition on, then  equals the difference in group means, e.g., 

.

Note2: The holding all other variables constant interpretation also applies for categorical variables in multiple 21 / 68

Interpreting coe�cients

Categorical variables

 for binary variable 
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Interpreting coe�cients

Categorical variables

 for binary variable 
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Task 2: Categorical Variables (3 Minutes)

Continue with the wage1  dataset.

Now regress wage  on female . What is ?

Add married  to the regression. Now what is ?
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Interpreting coe�cients

Interactions

Interactions allow the effect of one variable to change based upon the level of another
variable.

Examples

1. Does the effect of schooling on pay change by gender?

2. Does the effect of gender on pay change by race?

3. Does the effect of schooling on pay change by experience?
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Interpreting coe�cients

Interactions

Previously, we considered a model that allowed women and men to have different wages,
but the model assumed the effect of school on pay was the same for everyone:

but we can also allow the effect of school to vary by gender:
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Interpreting coe�cients

Interactions

The model where schooling has the same effect for everyone (F and M):
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Interpreting coe�cients

Interactions

The model where schooling's effect can differ by gender (F and M):
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Interpreting coe�cients

Interactions

Interpreting coefficients can be a little tricky with interactions, but the key† is to carefully
work through the math.

Expected returns for an additional year of schooling for women:

† As is often the case with econometrics. 29 / 68

Interpreting coe�cients

Interactions

Interpreting coefficients can be a little tricky with interactions, but the key† is to carefully
work through the math.

Expected returns for an additional year of schooling for women:

Similarly,  gives the expected return to an additional year of schooling for men. Thus, 
gives the difference in the returns to schooling for women and men.

† As is often the case with econometrics. 29 / 68

Task 3: Interactions (4 minutes)

Same dataset!

Regress wage on experience, female indicator and their interaction. What is the
interpretation of all the coefficients here? Can you distinguish them from zero?

What is the expected wage for a male with 5 years of experience?
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Interpreting coe�cients

Log-linear speci�cation

In economics, you will frequently see logged outcome variables with linear (non-logged)
explanatory variables, e.g.,

This specification changes our interpretation of the slope coefficients.

data(hprice1,package = "wooldridge")
lm(log(price) ~ bdrms, data = hprice1) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    5.04     0.126      39.9  3.13e-57
#> 2 bdrms          0.167    0.0345      4.85 5.43e- 6

31 / 68

Interpretation

A one-unit increase in our explanatory
variable increases the outcome variable
by approximately  percent.

Example: An additional bedroom
increases sales prices of a house by
approximately 16 percent (for 
).

Interpreting coe�cients

Log-linear speci�cation
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Interpreting coe�cients

Log-linear speci�cation

Consider the log-linear model

and differentiate

So a marginal change in  (i.e., ) leads to a  percentage change in .
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.

Good approximation as long as  is not
too big.

We approximate

Interpreting coe�cients

Log-linear speci�cation

What about that approximation part?

An additional bedroom increases sales prices of a house by approximately 16
percent (for ).
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Good approximation as long as  is not
too big.
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Interpreting coe�cients

Log-linear speci�cation

What about that approximation part?

An additional bedroom increases sales prices of a house by approximately 16
percent (for ).
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.

Good approximation as long as  is not
too big.

We approximate

The exact formula is

In our case:

Interpreting coe�cients

Log-linear speci�cation

What about that approximation part?

An additional bedroom increases sales prices of a house by approximately 16
percent (for ).
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Task 4

same Dataset!

Now regress log wage on education and tenure. How does the interpretation of the
coefficient on education change?
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Interpreting coe�cients

Log-log speci�cation

Similarly, econometricians frequently employ log-log models, in which the outcome variable
is logged and at least one explanatory variable is logged

Interpretation:

A one-percent increase in  will lead to a  percent change in .
Often interpreted as an elasticity.
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Interpreting coe�cients

Log-log speci�cation

Consider the log-log model

and differentiate

which says that for a one-percent increase in , we will see a  percent increase in . As an
elasticity:
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Task 5

Load the hprice1  dataset from the wooldridge  package.

Regress log price on log sqrft. What is the interpretation on log(sqrft)?

What is the  (Caution! not log price!)
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lm(log(price) ~ log(sqrft), data = hprice1) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)   -0.975    0.641      -1.52 1.32e- 1
#> 2 log(sqrft)     0.873    0.0846     10.3  1.05e-16

a 1% increase in square footage of the
house leads to a 0.873% increase in sales
price.

Notice the absence of units here (it's all
in percent terms of both variables
involved).

Interpreting coe�cients

Log-log speci�cation
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Interpreting coe�cients

Log-linear with a binary variable

Note: If you have a log-linear model with a binary indicator variable, the interpretation for
the coefficient on that variable changes.

Consider again

for binary variable .

The approximate interpretation of  is as before:

When  changes from 0 to 1,  will change by  percent.
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Approximate

When colonial changes from 0 to 1 (i.e.
house becomes colonial),  will change
by  percent.

Exact

When colonial changes from 1 to 0, 

will change by 

percent.

#> 
#> Call:
#> lm(formula = log(price) ~ log(lotsize) + log(sqrft) + bdrms + 
#>     colonial, data = hprice1)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.69479 -0.09750 -0.01619  0.09151  0.70228 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  -1.34959    0.65104  -2.073   0.0413 *  
#> log(lotsize)  0.16782    0.03818   4.395 3.25e-05 ***
#> log(sqrft)    0.70719    0.09280   7.620 3.69e-11 ***
#> bdrms         0.02683    0.02872   0.934   0.3530    
#> colonial      0.05380    0.04477   1.202   0.2330    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.1841 on 83 degrees of freedom
#> Multiple R-squared:  0.6491,    Adjusted R-squared:  0.6322 
#> F-statistic: 38.38 on 4 and 83 DF,  p-value: < 2.2e-16
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Uncertainty and inference
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Uncertainty and inference

Is there more?

Up to this point, we know OLS has some nice properties, and we know how to estimate an
intercept and slope coefficient via OLS.

Our current workflow:

Get data (points with  and  values)
Regress  on 

Plot the OLS line (i.e., )

Done?

But how do we actually learn something from this exercise?
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Uncertainty and inference

Linkup with Intro Course

This is related to Intro Course material:

1. Sampling

2. Hypothesis Testing

3. Regression Inference
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Uncertainty and inference

There is more

But how do we actually learn something from this exercise?

Based upon our value of , can we rule out previously hypothesized values?

How confident should we be in the precision of our estimates?
How well does our model explain the variation we observe in ?

We need to be able to deal with uncertainty. Enter: Inference.
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Uncertainty and inference

Learning from our errors

As our previous simulation pointed out, our problem with uncertainty is that we don't know

whether our sample estimate is close or far from the unknown population parameter.†

However, all is not lost. We can use the errors  to get a sense of how well our

model explains the observed variation in .

When our model appears to be doing a "nice" job, we might be a little more confident in
using it to learn about the relationship between  and .

Now we just need to formalize what a "nice job" actually means.

†: Except when we run the simulation ourselves—which is why we like simulations.
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Uncertainty and inference

Learning from our errors

First off, we will estimate the variance of  (recall: ) using our squared errors,

i.e.,

where  gives the number of slope terms and intercepts that we estimate (e.g.,  and 
would give ).

 is an unbiased estimator of .
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Uncertainty and inference

Learning from our errors

We know that the variance of  (for simple linear regression) is

which shows that the variance of our slope estimator

1. increases as our disturbances become noisier
2. decreases as the variance of  increases
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Uncertainty and inference

Learning from our errors

More common: The standard error of 

Recall: The standard error of an estimator is the standard deviation of the estimator's
distribution.
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Uncertainty and inference

Learning from our errors

Standard error output is standard in R 's lm :

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10
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Uncertainty and inference

Learning from our errors

We use the standard error of , along with  itself, to learn about the parameter .

After deriving the distribution of ,† we have two (related) options for formal statistical

inference (learning) about our unknown parameter :

Confidence intervals: Use the estimate and its standard error to create an interval that,

when repeated, will generally†† contain the true parameter.

Hypothesis tests: Determine whether there is statistically significant evidence to reject a
hypothesized value or range of values.

†: Hint: it's normal with the mean and variance we've derived/discussed above)  
††: E.g., Similarly constructed 95% confidence intervals will contain the true parameter 95% of the time.
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

 denotes the  quantile of a  dist. with  degrees of freedom.

53 / 68

Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

For example, 100 obs., two coefficients (i.e.,  and ), and  (for a

95% confidence interval) gives us 
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

Example:

lm(y ~ x, data = pop_df) %>% tidy(conf.int = TRUE)

#> # A tibble: 2 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8    1.69      3.37 
#> 2 x              0.567    0.0793      7.15 1.59e-10    0.410     0.724
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

Example:

lm(y ~ x, data = pop_df) %>% tidy(conf.int = TRUE)

#> # A tibble: 2 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8    1.69      3.37 
#> 2 x              0.567    0.0793      7.15 1.59e-10    0.410     0.724

Our 95% confidence interval is thus 
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Uncertainty and inference

Con�dence intervals

So we have a confidence interval for , i.e., .

What does it mean?
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Informally: The confidence interval gives us a region (interval) in which we can place some
trust (confidence) for containing the parameter.
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Con�dence intervals

So we have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we can place some
trust (confidence) for containing the parameter.

More formally: If repeatedly sample from our population and construct confidence
intervals for each of these samples,  percent of our intervals (e.g., 95%) will contain

the population parameter somewhere in the interval.
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Uncertainty and inference

Con�dence intervals

So we have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we can place some
trust (confidence) for containing the parameter.

More formally: If repeatedly sample from our population and construct confidence
intervals for each of these samples,  percent of our intervals (e.g., 95%) will contain

the population parameter somewhere in the interval.

Now back to our simulation...
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Uncertainty and inference

Con�dence intervals

We drew 10,000 samples (each of size ) from our population and estimated our
regression model for each of these simulations:

(repeated 10,000 times)

Now, let's estimate 95% confidence intervals for each of these intervals...
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From our previous
simulation: 97.8% of our
95% confidences intervals
contain the true parameter
value of .

That's a probabilistic
statement:

Could be more.
Could be less.

Uncertainty and inference

Con�dence intervals

58 / 68

Uncertainty and inference

Hypothesis testing

In many applications, we want to know more than a point estimate or a range of values. We
want to know what our statistical evidence says about existing theories.

We want to test hypotheses posed by officials, politicians, economists, scientists, friends,
weird neighbors, etc.

Examples

Does increasing police presence reduce crime?
Does building a giant wall reduce crime?
Does shutting down a government adversely affect the economy?
Does legal cannabis reduce drunk driving or reduce opiod use?
Do air quality standards increase health and/or reduce jobs?
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Uncertainty and inference

Hypothesis testing

Hypothesis testing relies upon very similar results and intuition.

While uncertainty certainly exists, we can still build reliable statistical tests (rejecting or
failing to reject a posited hypothesis).
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Uncertainty and inference

Hypothesis testing

Hypothesis testing relies upon very similar results and intuition.

While uncertainty certainly exists, we can still build reliable statistical tests (rejecting or
failing to reject a posited hypothesis).

OLS t test Our (null) hypothesis states that  equals a value , i.e., 

From OLS's properties, we can show that the test statistic

follows the  distribution with  degrees of freedom.
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Uncertainty and inference

Hypothesis testing

For an -level, two-sided test, we reject the null hypothesis (and conclude with the
alternative hypothesis) when

meaning that our test statistic is more extreme than the critical value.

Alternatively, we can calculate the p-value that accompanies our test statistic, which
effectively gives us the probability of seeing our test statistic or a more extreme test statistic
if the null hypothesis were true.

Very small p-values (generally < 0.05) mean that it would be unlikely to see our results if the
null hyopthesis were really true—we tend to reject the null for p-values below 0.05.
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Uncertainty and inference

Hypothesis testing

R  and statas default to testing hypotheses against the value zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10
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Uncertainty and inference

Hypothesis testing

R  and statas default to testing hypotheses against the value zero.
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Ho:  vs. Ha: 
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Uncertainty and inference

Hypothesis testing

R  and statas default to testing hypotheses against the value zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

Ho:  vs. Ha: 

 and  which implies p-value 

Therefore, we reject Ho.
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Uncertainty and inference

F tests

You will sometimes see  tests in econometrics.

We use  tests to test hypotheses that involve multiple parameters  
 (e.g.,  or ),

rather than a single simple hypothesis  
 (e.g., , for which we would just use a  test).
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Uncertainty and inference

F tests

Example

Economists love to say "Money is fungible."

Imagine that we might want to test whether money received as income actually has the
same effect on consumption as money received from tax rebates/returns.
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Uncertainty and inference

F tests

Example, continued

We can write our null hypothesis as

Imposing this null hypothesis gives us the restricted model
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Uncertainty and inference

F tests

Example, continued

To this the null hypothesis  against ,  
we use the  statistic

which (as its name suggests) follows the  distribution with  numerator degrees of freedom
and  denominator degrees of freedom.

Here,  is the number of restrictions we impose via .
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Uncertainty and inference

F tests

Example, continued

The term  is the sum of squared errors (SSE) from our restricted model

and  is the sum of squared errors (SSE) from our unrestricted model
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Last time, we refreshed our basic OLS
knowledge

Today we continue and look at more
than one explanatory variable, and
associated problems

But, why more than one variable?

Like, how many other variables?

And, above all: which ones ? 

Recap 2
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What is the causal
impact of class size on
test scores?

?

We use a model to
order our thoughts
about how a causal
impact is determined.
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Multiple Variables

Let's augment our model with more variables:
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Spot the Di�erence 
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Omitted-variable bias

Omitted-variable bias (OVB) arises when we omit a variable that

1. affects our outcome variable 

2. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of .
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Omitted-variable bias

Omitted-variable bias (OVB) arises when we omit a variable that

1. affects our outcome variable 

2. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of .

Note: OVB Is not exclusive to multiple linear regression, but it does require multiple
variables affect .
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Omitted-variable bias

Example

Let's imagine a simple model for the amount individual  gets paid

where

 gives 's years of schooling
 denotes an indicator variable for whether individual  is male.

thus

: the returns to an additional year of schooling (ceteris paribus)
: the premium for being male (ceteris paribus)  

If , then there is discrimination against women—receiving less pay based upon
gender.
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Omitted-variable bias

Example, continued

From our population model

If a study focuses on the relationship between pay and schooling, i.e.,

where .

We used our exogeneity assumption to derive OLS' unbiasedness. But even if , it

is not true that  so long as .

Specifically, .
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Omitted-variable bias

Example, continued

From our population model

If a study focuses on the relationship between pay and schooling, i.e.,

where .

We used our exogeneity assumption to derive OLS' unbiasedness. But even if , it

is not true that  so long as .

Specifically, . Now OLS is biased.
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Omitted-variable bias

Example, continued

Let's try to see this result graphically.

The population model:

Our regression model that suffers from omitted-variable bias:

Finally, imagine that women, on average, receive more schooling than men.
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Omitted-variable bias

Example, continued: 

The relationship between pay and schooling.
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Omitted-variable bias

Example, continued: 

Biased regression estimate: 
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Omitted-variable bias

Example, continued: 

Recalling the omitted variable: Gender female and male
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Omitted-variable bias

Example, continued: 

Recalling the omitted variable: Gender female and male
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Omitted-variable bias

Example, continued: 

Unbiased regression estimate: 
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Omitted-variable bias

Solutions

1. Don't omit variables 

2. Instrumental variables and two-stage least squares (coming soon): If we could find
something that only affects  but not the omitted variable, we can make progress!

3. Use multiple observations for the same unit : panel data.

Warning: There are situations in which neither solution is possible.
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Omitted-variable bias

Solutions

1. Don't omit variables 

2. Instrumental variables and two-stage least squares (coming soon): If we could find
something that only affects  but not the omitted variable, we can make progress!

3. Use multiple observations for the same unit : panel data.

Warning: There are situations in which neither solution is possible.

1. Proceed with caution (sometimes you can sign the bias).

2. The key is to have a mental map of should belong to the model.
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Interpreting coe�cients
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Interpreting coe�cients

Continuous variables

Consider the relationship

where

 is a continuous variable measuring an individual's pay

 is a continuous variable that measures years of education
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Interpreting coe�cients

Interpretations

: the -intercept, i.e.,  when 
: the expected increase in  for a one-unit increase in 
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Interpreting coe�cients

Continuous variables

Consider the model

Differentiate the model:
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Task 1: Interpretation (4 minutes)

1. Load the wage1  dataset from the wooldridge  package. you may have to install this first.

2. Run skimr::skim  on the dataset to get an overview. what is the fraciton of nonwhite in
the data?

3. Regressing wage on education and tenure, what is the interpretation of the tenure
coefficient? You may need to consult ?wage1  here.
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Interpreting coe�cients

Categorical variables

Consider the relationship

where

 is a continuous variable measuring an individual's pay

 is a binary/indicator variable taking  when  is female
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Interpreting coe�cients

Interpretations

: the expected  for males (i.e., when )
: the expected difference in  between females and males

: the expected  for females
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Interpreting coe�cients

Categorical variables

Derivations
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Interpreting coe�cients

Categorical variables

Derivations

21 / 68



Interpreting coe�cients

Categorical variables

Derivations

Note: If there are no other variables to condition on, then  equals the difference in group means, e.g., 

.

Note2: The holding all other variables constant interpretation also applies for categorical variables in multiple 21 / 68



Interpreting coe�cients

Categorical variables

 for binary variable 
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Interpreting coe�cients

Categorical variables

 for binary variable 
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Task 2: Categorical Variables (3 Minutes)

Continue with the wage1  dataset.

Now regress wage  on female . What is ?

Add married  to the regression. Now what is ?
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Interpreting coe�cients

Interactions

Interactions allow the effect of one variable to change based upon the level of another
variable.

Examples

1. Does the effect of schooling on pay change by gender?

2. Does the effect of gender on pay change by race?

3. Does the effect of schooling on pay change by experience?

25 / 68



Interpreting coe�cients

Interactions

Previously, we considered a model that allowed women and men to have different wages,
but the model assumed the effect of school on pay was the same for everyone:

but we can also allow the effect of school to vary by gender:
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Interpreting coe�cients

Interactions

The model where schooling has the same effect for everyone (F and M):

27 / 68



Interpreting coe�cients

Interactions

The model where schooling's effect can differ by gender (F and M):
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Interpreting coe�cients

Interactions

Interpreting coefficients can be a little tricky with interactions, but the key† is to carefully
work through the math.

Expected returns for an additional year of schooling for women:

† As is often the case with econometrics. 29 / 68



Interpreting coe�cients

Interactions

Interpreting coefficients can be a little tricky with interactions, but the key† is to carefully
work through the math.

Expected returns for an additional year of schooling for women:

Similarly,  gives the expected return to an additional year of schooling for men. Thus, 
gives the difference in the returns to schooling for women and men.

† As is often the case with econometrics. 29 / 68



Task 3: Interactions (4 minutes)

Same dataset!

Regress wage on experience, female indicator and their interaction. What is the
interpretation of all the coefficients here? Can you distinguish them from zero?

What is the expected wage for a male with 5 years of experience?
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Interpreting coe�cients

Log-linear speci�cation

In economics, you will frequently see logged outcome variables with linear (non-logged)
explanatory variables, e.g.,

This specification changes our interpretation of the slope coefficients.

data(hprice1,package = "wooldridge")
lm(log(price) ~ bdrms, data = hprice1) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    5.04     0.126      39.9  3.13e-57
#> 2 bdrms          0.167    0.0345      4.85 5.43e- 6
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Interpretation

A one-unit increase in our explanatory
variable increases the outcome variable
by approximately  percent.

Example: An additional bedroom
increases sales prices of a house by
approximately 16 percent (for 
).

Interpreting coe�cients

Log-linear speci�cation
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Interpreting coe�cients

Log-linear speci�cation

Consider the log-linear model

and differentiate

So a marginal change in  (i.e., ) leads to a  percentage change in .
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.

Good approximation as long as  is not
too big.

We approximate

Interpreting coe�cients

Log-linear speci�cation

What about that approximation part?

An additional bedroom increases sales prices of a house by approximately 16
percent (for ).
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What about that approximation part?
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.

Good approximation as long as  is not
too big.

We approximate

The exact formula is

In our case:

Interpreting coe�cients

Log-linear speci�cation

What about that approximation part?

An additional bedroom increases sales prices of a house by approximately 16
percent (for ).
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Task 4

same Dataset!

Now regress log wage on education and tenure. How does the interpretation of the
coefficient on education change?
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Interpreting coe�cients

Log-log speci�cation

Similarly, econometricians frequently employ log-log models, in which the outcome variable
is logged and at least one explanatory variable is logged

Interpretation:

A one-percent increase in  will lead to a  percent change in .
Often interpreted as an elasticity.

37 / 68



Interpreting coe�cients

Log-log speci�cation

Consider the log-log model

and differentiate

which says that for a one-percent increase in , we will see a  percent increase in . As an
elasticity:
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Task 5

Load the hprice1  dataset from the wooldridge  package.

Regress log price on log sqrft. What is the interpretation on log(sqrft)?

What is the  (Caution! not log price!)
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lm(log(price) ~ log(sqrft), data = hprice1) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)   -0.975    0.641      -1.52 1.32e- 1
#> 2 log(sqrft)     0.873    0.0846     10.3  1.05e-16

a 1% increase in square footage of the
house leads to a 0.873% increase in sales
price.

Notice the absence of units here (it's all
in percent terms of both variables
involved).

Interpreting coe�cients

Log-log speci�cation
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Interpreting coe�cients

Log-linear with a binary variable

Note: If you have a log-linear model with a binary indicator variable, the interpretation for
the coefficient on that variable changes.

Consider again

for binary variable .

The approximate interpretation of  is as before:

When  changes from 0 to 1,  will change by  percent.
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Approximate

When colonial changes from 0 to 1 (i.e.
house becomes colonial),  will change
by  percent.

Exact

When colonial changes from 1 to 0, 

will change by 

percent.

#> 
#> Call:
#> lm(formula = log(price) ~ log(lotsize) + log(sqrft) + bdrms + 
#>     colonial, data = hprice1)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.69479 -0.09750 -0.01619  0.09151  0.70228 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  -1.34959    0.65104  -2.073   0.0413 *  
#> log(lotsize)  0.16782    0.03818   4.395 3.25e-05 ***
#> log(sqrft)    0.70719    0.09280   7.620 3.69e-11 ***
#> bdrms         0.02683    0.02872   0.934   0.3530    
#> colonial      0.05380    0.04477   1.202   0.2330    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.1841 on 83 degrees of freedom
#> Multiple R-squared:  0.6491,    Adjusted R-squared:  0.6322 
#> F-statistic: 38.38 on 4 and 83 DF,  p-value: < 2.2e-16
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Uncertainty and inference
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Uncertainty and inference

Is there more?

Up to this point, we know OLS has some nice properties, and we know how to estimate an
intercept and slope coefficient via OLS.

Our current workflow:

Get data (points with  and  values)
Regress  on 

Plot the OLS line (i.e., )

Done?

But how do we actually learn something from this exercise?
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Uncertainty and inference

Linkup with Intro Course

This is related to Intro Course material:

1. Sampling

2. Hypothesis Testing

3. Regression Inference
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Uncertainty and inference

There is more

But how do we actually learn something from this exercise?

Based upon our value of , can we rule out previously hypothesized values?

How confident should we be in the precision of our estimates?
How well does our model explain the variation we observe in ?

We need to be able to deal with uncertainty. Enter: Inference.
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Uncertainty and inference

Learning from our errors

As our previous simulation pointed out, our problem with uncertainty is that we don't know

whether our sample estimate is close or far from the unknown population parameter.†

However, all is not lost. We can use the errors  to get a sense of how well our

model explains the observed variation in .

When our model appears to be doing a "nice" job, we might be a little more confident in
using it to learn about the relationship between  and .

Now we just need to formalize what a "nice job" actually means.

†: Except when we run the simulation ourselves—which is why we like simulations.

47 / 68



Uncertainty and inference

Learning from our errors

First off, we will estimate the variance of  (recall: ) using our squared errors,

i.e.,

where  gives the number of slope terms and intercepts that we estimate (e.g.,  and 
would give ).

 is an unbiased estimator of .
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Uncertainty and inference

Learning from our errors

We know that the variance of  (for simple linear regression) is

which shows that the variance of our slope estimator

1. increases as our disturbances become noisier
2. decreases as the variance of  increases
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Uncertainty and inference

Learning from our errors

More common: The standard error of 

Recall: The standard error of an estimator is the standard deviation of the estimator's
distribution.
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Uncertainty and inference

Learning from our errors

Standard error output is standard in R 's lm :

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10
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Uncertainty and inference

Learning from our errors

We use the standard error of , along with  itself, to learn about the parameter .

After deriving the distribution of ,† we have two (related) options for formal statistical

inference (learning) about our unknown parameter :

Confidence intervals: Use the estimate and its standard error to create an interval that,

when repeated, will generally†† contain the true parameter.

Hypothesis tests: Determine whether there is statistically significant evidence to reject a
hypothesized value or range of values.

†: Hint: it's normal with the mean and variance we've derived/discussed above)  
††: E.g., Similarly constructed 95% confidence intervals will contain the true parameter 95% of the time.
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

 denotes the  quantile of a  dist. with  degrees of freedom.
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

For example, 100 obs., two coefficients (i.e.,  and ), and  (for a

95% confidence interval) gives us 
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

Example:

lm(y ~ x, data = pop_df) %>% tidy(conf.int = TRUE)

#> # A tibble: 2 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8    1.69      3.37 
#> 2 x              0.567    0.0793      7.15 1.59e-10    0.410     0.724
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Uncertainty and inference

Con�dence intervals

We construct -level confidence intervals for 

Example:

lm(y ~ x, data = pop_df) %>% tidy(conf.int = TRUE)

#> # A tibble: 2 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8    1.69      3.37 
#> 2 x              0.567    0.0793      7.15 1.59e-10    0.410     0.724

Our 95% confidence interval is thus 
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Uncertainty and inference

Con�dence intervals

So we have a confidence interval for , i.e., .

What does it mean?
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Uncertainty and inference

Con�dence intervals

So we have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we can place some
trust (confidence) for containing the parameter.

More formally: If repeatedly sample from our population and construct confidence
intervals for each of these samples,  percent of our intervals (e.g., 95%) will contain

the population parameter somewhere in the interval.

Now back to our simulation...
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Uncertainty and inference

Con�dence intervals

We drew 10,000 samples (each of size ) from our population and estimated our
regression model for each of these simulations:

(repeated 10,000 times)

Now, let's estimate 95% confidence intervals for each of these intervals...
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From our previous
simulation: 97.8% of our
95% confidences intervals
contain the true parameter
value of .

That's a probabilistic
statement:

Could be more.
Could be less.

Uncertainty and inference

Con�dence intervals
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Uncertainty and inference

Hypothesis testing

In many applications, we want to know more than a point estimate or a range of values. We
want to know what our statistical evidence says about existing theories.

We want to test hypotheses posed by officials, politicians, economists, scientists, friends,
weird neighbors, etc.

Examples

Does increasing police presence reduce crime?
Does building a giant wall reduce crime?
Does shutting down a government adversely affect the economy?
Does legal cannabis reduce drunk driving or reduce opiod use?
Do air quality standards increase health and/or reduce jobs?
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Uncertainty and inference

Hypothesis testing

Hypothesis testing relies upon very similar results and intuition.

While uncertainty certainly exists, we can still build reliable statistical tests (rejecting or
failing to reject a posited hypothesis).
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Uncertainty and inference

Hypothesis testing

Hypothesis testing relies upon very similar results and intuition.

While uncertainty certainly exists, we can still build reliable statistical tests (rejecting or
failing to reject a posited hypothesis).

OLS t test Our (null) hypothesis states that  equals a value , i.e., 

From OLS's properties, we can show that the test statistic

follows the  distribution with  degrees of freedom.
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Uncertainty and inference

Hypothesis testing

For an -level, two-sided test, we reject the null hypothesis (and conclude with the
alternative hypothesis) when

meaning that our test statistic is more extreme than the critical value.

Alternatively, we can calculate the p-value that accompanies our test statistic, which
effectively gives us the probability of seeing our test statistic or a more extreme test statistic
if the null hypothesis were true.

Very small p-values (generally < 0.05) mean that it would be unlikely to see our results if the
null hyopthesis were really true—we tend to reject the null for p-values below 0.05.

61 / 68



Uncertainty and inference

Hypothesis testing

R  and statas default to testing hypotheses against the value zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10
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Uncertainty and inference

Hypothesis testing

R  and statas default to testing hypotheses against the value zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

Ho:  vs. Ha: 

 and  which implies p-value 

Therefore, we reject Ho.
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Uncertainty and inference

F tests

You will sometimes see  tests in econometrics.

We use  tests to test hypotheses that involve multiple parameters  
 (e.g.,  or ),

rather than a single simple hypothesis  
 (e.g., , for which we would just use a  test).
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Uncertainty and inference

F tests

Example

Economists love to say "Money is fungible."

Imagine that we might want to test whether money received as income actually has the
same effect on consumption as money received from tax rebates/returns.
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Uncertainty and inference

F tests

Example, continued

We can write our null hypothesis as

Imposing this null hypothesis gives us the restricted model
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Uncertainty and inference

F tests

Example, continued

To this the null hypothesis  against ,  
we use the  statistic

which (as its name suggests) follows the  distribution with  numerator degrees of freedom
and  denominator degrees of freedom.

Here,  is the number of restrictions we impose via .
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Uncertainty and inference

F tests

Example, continued

The term  is the sum of squared errors (SSE) from our restricted model

and  is the sum of squared errors (SSE) from our unrestricted model
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