
We already encountered the bootstrap:
we resample repeatedly with
replacement from our analysis data.

We'll also learn about cross validation
today, which is a related idea.

The bootstratp is useful assess model
uncertainty.

Cross Validation is used assess model
accuracy.

Resampling Methods

2 / 51

We already encountered the bootstrap:
we resample repeatedly with
replacement from our analysis data.

We'll also learn about cross validation
today, which is a related idea.

The bootstratp is useful assess model
uncertainty.

Cross Validation is used assess model
accuracy.

Remember how bootstrapping works:
We just pretend that our sample is the
full population.

And we repeatedly draw from this
randomly, with replacement.

This will create a sampling distribution,
which closely approximates the true
sampling distribution!

We can use this to compute confidence
intervals when no closed form exists or
illustrate uncertainty.

Resampling Methods
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The tidymodels  suite of
packages is amazing
here. I copied most of
the code from them.

Let's look at fitting a
nonlinear least squares
model to this data:

library(tidyverse)
ggplot(mtcars, aes(mpg,wt)) +
  geom_point()

Do The Bootstrap!
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Remember: OLS
required linear
parameters.

NLS relaxes that:

Again want the 's.

 is known!

nlsfit <- nls(mpg ~ k / wt + b, 
              mtcars, 
              start = list(k = 1, b = 0))

ggplot(mtcars, aes(wt, mpg)) +
    geom_point() +
    geom_line(aes(y = predict(nlsfit))) + theme_bw() + ggtitle("Cars with NLS F

Non-linear Least Squares (NLS) for Cars
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1. Let's create 200
bootstrap samples.

2. Estimate our NLS model
on each.

3. Get coefficients from
each.

4. Assess their variation.

# 1.
library(rsample)
library(stats)
boots <- bootstraps(mtcars, times = N, apparent = TRUE)

# 2. a) create a wrapper for nls
fit_nls_on_bootstrap <- function(split) {
    nls(mpg ~ k / wt + b, analysis(split), start = list(k = 1, b = 0))
}

# 2. b) map wrapper on to each bootstrap sample
boot_models <-
  boots %>% 
  mutate(model = map(splits, fit_nls_on_bootstrap),
         coef_info = map(model, tidy))
# 3. 
boot_coefs <- 
  boot_models %>% 
  unnest(coef_info)

Bootstrapping the NLS models
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rsample  functions split
datasets. bootstrap
draws total number of
observations for
analysis  (i.e. for
training)

boot_coefs  has
estimates for each
bootstrap sample.

head(boots)

## # A tibble: 6 × 2
##   splits          id          
##   <list>          <chr>       
## 1 <split [32/12]> Bootstrap001
## 2 <split [32/14]> Bootstrap002
## 3 <split [32/11]> Bootstrap003
## 4 <split [32/8]>  Bootstrap004
## 5 <split [32/10]> Bootstrap005
## 6 <split [32/10]> Bootstrap006

head(boot_coefs)

## # A tibble: 6 × 8
##   splits          id           model  term  estimate std.error statis…¹  p.value
##   <list>          <chr>        <list> <chr>    <dbl>     <dbl>    <dbl>    <dbl>
## 1 <split [32/12]> Bootstrap001 <nls>  k        48.0       4.61    10.4  1.76e-11
## 2 <split [32/12]> Bootstrap001 <nls>  b         4.22      1.70     2.48 1.90e- 2
## 3 <split [32/14]> Bootstrap002 <nls>  k        43.2       3.37    12.8  1.04e-13
## 4 <split [32/14]> Bootstrap002 <nls>  b         4.61      1.14     4.04 3.40e- 4
## 5 <split [32/11]> Bootstrap003 <nls>  k        45.9       4.50    10.2  2.85e-11
## 6 <split [32/11]> Bootstrap003 <nls>  b         5.05      1.67     3.02 5.06e- 3
## # … with abbreviated variable name ¹ statistic

Bootstrapping the NLS models: Using the rsample
package
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We can now easily
compute and plot
bootstrap CIs!

Remember: percentile
method just takes 2.5
and 97.5 quantiles of
bootstrap sampling
distribution as bounds
of CI.

percentile_intervals <- int_pctl(boot_models, coef_info)
ggplot(boot_coefs, aes(estimate)) +
  geom_histogram(bins = 30) +
  facet_wrap( ~ term, scales = "free") +
  geom_vline(aes(xintercept = .lower), data = percentile_intervals, col = "blue
  geom_vline(aes(xintercept = .upper), data = percentile_intervals, col = "blue

Con�dence Intervals
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It's also easy to
illustrate uncertainty in
fit with this.

Let's get predicted
values with augment
from our models.

boot_aug <- 
  boot_models %>% 
  sample_n(200) %>% 
  mutate(augmented = 
           map(model, augment)) %
  unnest(augmented)

ggplot(boot_aug, aes(wt, mpg)) +
  geom_line(aes(y = .fitted, group = id), alpha = .1, col = "red") +
  geom_point() + theme_bw()

Illustrate More Uncertainty
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Last week we encountered the test MSE.

In simulation studies, we can compute it,
but in real life? It's much harder to
obtain a true test data set.

What we can do in practice, however, is
to hold out part of our data for testing
purposes.

We just set it aside at the beginning and
don't use it for training.

Several Approaches:

1. Validation Set

2. Leave-one-out cross validation (LOOCV)

3. k-fold Cross Validation (k-CV)

Cross Validation
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Randomly divide your data into 
groups of equal size.

train model on all but last groups (folds),
compute MSE on last fold.

train model on all but penultimat fold,
compute MSE there, etc

The k-fold CV is then

K-fold Cross Validation (k-CV)
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Randomly divide your data into 
groups of equal size.

train model on all but last groups (folds),
compute MSE on last fold.

train model on all but penultimat fold,
compute MSE there, etc

The k-fold CV is then

We have to fit the model  times here.

Previous methods (LOOCV) are much
more costly in terms of computing time.

In practice one often chooses  or 
.

Let's look again at the rsample  package
as to how to set this up!

K-fold Cross Validation (k-CV)
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Splits for Bootstrap Samples

library(rsample) # already loaded...
bcars <- bootstraps(mtcars, times = 3)
head(bcars,n=3)

## # Bootstrap sampling 
## # A tibble: 3 × 2
##   splits          id        
##   <list>          <chr>     
## 1 <split [32/15]> Bootstrap1
## 2 <split [32/10]> Bootstrap2
## 3 <split [32/14]> Bootstrap3

nrow(analysis(bcars$splits[[1]]))

## [1] 32

Splits for Testing/Training

set.seed(1221)
cvcars <- vfold_cv(mtcars, v = 10, repeats = 10)
head(cvcars,n=3)

## # A tibble: 3 × 3
##   splits         id       id2   
##   <list>         <chr>    <chr> 
## 1 <split [28/4]> Repeat01 Fold01
## 2 <split [28/4]> Repeat01 Fold02
## 3 <split [29/3]> Repeat01 Fold03

nrow(analysis(cvcars$splits[[1]]))

## [1] 28

nrow(assessment(cvcars$splits[[1]]))

## [1] 4

rsample package again
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Regularized Regression and Variable Selection

What to do when you have 307 potential predictors?
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The Linear Model is Great

If we have relatively few parameters  we typically have low variance with the
linear model.

This deteriorates with larger . With  (more parameters than data points) we
cannot even compute our  with OLS.

We often look for stars ***  when deciding which variable should be part of a model.
Correct only under certain assumptions.

Despite ***  we don't discover whether variable  is an important predictor of the

outcome.

OLS will never deliver an estimate  exactly zero.

Example?
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307 predictors! Which
ones to include?

Wait, we still have p-
values!

Can't we just take all
predictors with p <
0.05?

why not p < 0.06?

why not p < 0.07?

307 predictors for Sale_Price

a = AmesHousing::make_ames()  # house price sales
lma = lm(Sale_Price ~ . , data = a) # include all variables
broom::tidy(lma) %>% select(p.value) %>% arrange(desc(p.value)) %>%
  ggplot(aes(x = row_number(.),y = p.value)) + geom_point() + theme_bw() + geom_hline(yintercept = 0.05, color = 
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AmesHousing

# from: https://uc-r.github.io/regularized_regression
# Create training (70%) and 
# test (30%) sets for the AmesHousing::make_ames() data.

set.seed(123)
ames_split <- initial_split(a, prop = .7, strata = "Sale_Price")
ames_train <- training(ames_split)
ames_test  <- testing(ames_split)

# extract model matrix from both: code each factor level as a dummy
# don't take the intercept ([,-1])
ames_train_x <- model.matrix(Sale_Price ~ ., ames_train)[, -1]
ames_train_y <- log(ames_train$Sale_Price)

ames_test_x <- model.matrix(Sale_Price ~ ., ames_test)[, -1]
ames_test_y <- log(ames_test$Sale_Price)

# What is the dimension of of your feature matrix?
dim(ames_train_x)

## [1] 2049  308
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Lots of multicollinearity
among our predictors.

This will inflate
variance of our
estimates.

Here is the correlation
matrix of the first 60
predictors:

ca = cor(ames_train_x[,1:60])
corrplot::corrplot(ca,
                   tl.pos = "n")

Darker colours spell
trouble!

House Price Data: AmesHousing Package
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We can add a penalty P to the OLS
objective:

P will punish the algorithm for choosing
too large parameter values

Looking closely at P is beyond our scope
here.

But we will show how to use two
popular methods.

Regularization: Add a Penalty
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We can add a penalty P to the OLS
objective:

P will punish the algorithm for choosing
too large parameter values

Looking closely at P is beyond our scope
here.

But we will show how to use two
popular methods.

Ridge Objective:  penalty

 is a tuning parameter:  is no
penalty.

Lasso Objective:  penalty

Regularization: Add a Penalty

17 / 51

Ridge Regression with the glmnet package
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Parameter alpha   governs

whether we do Ridge or Lasso. Ridge
with alpha = 0 .

Using the glmnet::glmnet  function by
default standardizes all regressors

glmnet::glmnet  will run for many values
of .

# Apply Ridge regression to ames data
library(glmnet)
ames_ridge <- glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 0
)

plot(ames_ridge, xvar = "lambda")

Ridge in AmesHousing
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Each line is the point estimate for one
regressor at a given 

All regressors are non-zero, but get
arbitrarily small at high . We compress
considerable variation in estimates
(remember those are all standardized!)

So, what's the right  then?

 is a tuning parameter.

Let's do CV to find out the best .

Ridge in AmesHousing
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Remember what we said about
Overfitting: there is a sweet spot that
balances flexibility (here: many
regressors) and interpretability (here:
few regressors).

Let's do k-fold CV to compute our test
MSE, built in with glmnet::cv.glmnet :

# Apply CV Ridge regression to ames data
ames_ridge <- cv.glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 0
)

# plot results
plot(ames_ridge)

Tuning Ridge
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The dashed vertical lines mark the
minimum MSE and the largest  within
one std error of this minimum (to the
right of the first lines).

We would choose a lambda withing
those two dashed lines.

Remember that this keeps all variables.

Tuning Ridge
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Lasso with alpha = 1 .

You will see that this forces some
estimates to zero.

Hence it reduces the number of
variables in the model

ames_lasso <- glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 1
)
# plot results
plot(ames_lasso, xvar = "lambda")

lasso (least absolute shrinkage and selection operator)
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Huge variation in estimates gets
shrunken.

The top bar of the graph shows number
of active variables for each .

Again: What's the right  then?

Again: let's look at the test MSE!

lasso (least absolute shrinkage and selection operator)

24 / 51

Let's use the same function as before.

Let's do k-fold CV to compute our test
MSE, built in with glmnet::cv.glmnet :

ames_lasso <- cv.glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 1
)
# plot results
plot(ames_lasso)

Tuning Lasso

25 / 51

min(ames_lasso$cvm)       # minimum MSE

## [1] 0.02255555

ames_lasso$lambda.min     # lambda for this min MSE

## [1] 0.00328574

# 1 st.error of min MSE
ames_lasso$cvm[ames_lasso$lambda == ames_lasso$lambda

## [1] 0.02512657

ames_lasso$lambda.1se  # lambda for this MSE

## [1] 0.01003418

So: at MSE-minimizing , we went down
to < 139 variables.

Going 1 SE to the right incurs slightly
higher MSE, but important reduction in
variables!

Tuning Lasso
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Let's look again at coef estimates

The red dashed lines are minimal  and
lambda.1se

Depending on your task, the second line
may be acceptable.

Lasso predictors at optimal MSEs
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So, the lasso really selects variables.

Which ones are the most influental
variables then?

Remember, this is about finding the best
predictive model.

lasso vars
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Unsupervised Methods
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Unsupervised Methods

Remember: in this class of methods we don't have a designated output  for our input
variables .

We will talk about about Clustering methods

We won't have time for Principal Component Analysis (PCA).

Both of those are useful to summarise high-dimensional datasets.
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K-means Clustering
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Now Try Yourself !

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Denote  the -th cluster.

Each observation is assigned to exactly
one cluster.

Clusters are non-overlapping.

A good clustering is one where within-
cluster variation is as small as possible.

Let's write  as some measure of

within cluster variation.

K-means tries to solve the problem of
how to setup the clusters (i.e. how to
assign observations to clusters), in order
to...

What is k-Means Clustering Doing?
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Denote  the -th cluster.

Each observation is assigned to exactly
one cluster.

Clusters are non-overlapping.

A good clustering is one where within-
cluster variation is as small as possible.

Let's write  as some measure of

within cluster variation.

K-means tries to solve the problem of
how to setup the clusters (i.e. how to
assign observations to clusters), in order
to...

...minimize the total sum of :

A common choice for  is the

squared Euclidean Distance:

where  is the number of elements of 

.

What is k-Means Clustering Doing?
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tidymodels k-means clustering

library(tidymodels)

set.seed(27)

centers <- tibble(
  cluster = factor(1:3), 
  num_points = c(100, 150, 50),  # number points in each cluster
  x1 = c(5, 0, -3),              # x1 coordinate of cluster center
  x2 = c(-1, 1, -2)              # x2 coordinate of cluster center
)

labelled_points <- 
  centers %>%
  mutate(
    x1 = map2(num_points, x1, rnorm),
    x2 = map2(num_points, x2, rnorm)
  ) %>% 
  select(-num_points) %>% 
  unnest(cols = c(x1, x2))

ggplot(labelled_points, aes(x1, x2, color = cluster)) +
  geom_point(alpha = 0.3)
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tidymodels k-means clustering
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base R: kmeans

points <- 
  labelled_points %>% 
  select(-cluster)

kclust <- kmeans(points, centers = 3)
kclust

## K-means clustering with 3 clusters of sizes 148, 51, 101
## 
## Cluster means:
##            x1        x2
## 1  0.08853475  1.045461
## 2 -3.14292460 -2.000043
## 3  5.00401249 -1.045811
## 
## Clustering vector:
##   [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [38] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [75] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
## [260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [297] 2 2 2 2
## 
## Within cluster sum of squares by cluster:
## [1] 298.9415 108.8112 243.2092
## (between SS / total SS = 82 5 %)
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How many clusters k to choose?

kclusts <- 
  tibble(k = 1:9) %>%
  mutate(
    kclust = map(k, ~kmeans(points, .x)),
    tidied = map(kclust, tidy),
    glanced = map(kclust, glance),
    augmented = map(kclust, augment, points)
  )
kclusts

## # A tibble: 9 × 5
##       k kclust   tidied           glanced          augmented         
##   <int> <list>   <list>           <list>           <list>            
## 1     1 <kmeans> <tibble [1 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 2     2 <kmeans> <tibble [2 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 3     3 <kmeans> <tibble [3 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 4     4 <kmeans> <tibble [4 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 5     5 <kmeans> <tibble [5 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 6     6 <kmeans> <tibble [6 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 7     7 <kmeans> <tibble [7 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 8     8 <kmeans> <tibble [8 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 9     9 <kmeans> <tibble [9 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
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How many clusters k to choose?

Teasing out different datasets for plotting

notice the unnest  calls are useful for list  columns

clusters <- 
  kclusts %>%
  unnest(cols = c(tidied))

assignments <- 
  kclusts %>% 
  unnest(cols = c(augmented))

clusterings <- 
  kclusts %>%
  unnest(cols = c(glanced))
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p1 <- 
  ggplot(assignments, aes(x = x1, y = x2)) +
  geom_point(aes(color = .cluster), alpha = 0.8) + 
  facet_wrap(~ k)

How many clusters k to choose?
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Look for the Elbow!

Here at k = 3  the
reduction in 

 slows down

a lot.

More flexibility (more
clusters) overfits the
data beyond a certain
point (the elbow)

How many clusters k to choose? The Elbow Method

# the Elbow plot
ggplot(clusterings, aes(k, tot.withinss)) +
  geom_line() + ylab("Sum of W(C_k) over k") +
  geom_point()
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ENDEND
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We already encountered the bootstrap:
we resample repeatedly with
replacement from our analysis data.

We'll also learn about cross validation
today, which is a related idea.

The bootstratp is useful assess model
uncertainty.

Cross Validation is used assess model
accuracy.

Resampling Methods
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We already encountered the bootstrap:
we resample repeatedly with
replacement from our analysis data.

We'll also learn about cross validation
today, which is a related idea.

The bootstratp is useful assess model
uncertainty.

Cross Validation is used assess model
accuracy.

Remember how bootstrapping works:
We just pretend that our sample is the
full population.

And we repeatedly draw from this
randomly, with replacement.

This will create a sampling distribution,
which closely approximates the true
sampling distribution!

We can use this to compute confidence
intervals when no closed form exists or
illustrate uncertainty.

Resampling Methods
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The tidymodels  suite of
packages is amazing
here. I copied most of
the code from them.

Let's look at fitting a
nonlinear least squares
model to this data:

library(tidyverse)
ggplot(mtcars, aes(mpg,wt)) +
  geom_point()

Do The Bootstrap!
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https://www.tidymodels.org/learn/statistics/bootstrap/


Remember: OLS
required linear
parameters.

NLS relaxes that:

Again want the 's.

 is known!

nlsfit <- nls(mpg ~ k / wt + b, 
              mtcars, 
              start = list(k = 1, b = 0))

ggplot(mtcars, aes(wt, mpg)) +
    geom_point() +
    geom_line(aes(y = predict(nlsfit))) + theme_bw() + ggtitle("Cars with NLS F

Non-linear Least Squares (NLS) for Cars
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1. Let's create 200
bootstrap samples.

2. Estimate our NLS model
on each.

3. Get coefficients from
each.

4. Assess their variation.

# 1.
library(rsample)
library(stats)
boots <- bootstraps(mtcars, times = N, apparent = TRUE)

# 2. a) create a wrapper for nls
fit_nls_on_bootstrap <- function(split) {
    nls(mpg ~ k / wt + b, analysis(split), start = list(k = 1, b = 0))
}

# 2. b) map wrapper on to each bootstrap sample
boot_models <-
  boots %>% 
  mutate(model = map(splits, fit_nls_on_bootstrap),
         coef_info = map(model, tidy))
# 3. 
boot_coefs <- 
  boot_models %>% 
  unnest(coef_info)

Bootstrapping the NLS models
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rsample  functions split
datasets. bootstrap
draws total number of
observations for
analysis  (i.e. for
training)

boot_coefs  has
estimates for each
bootstrap sample.

head(boots)

## # A tibble: 6 × 2
##   splits          id          
##   <list>          <chr>       
## 1 <split [32/12]> Bootstrap001
## 2 <split [32/14]> Bootstrap002
## 3 <split [32/11]> Bootstrap003
## 4 <split [32/8]>  Bootstrap004
## 5 <split [32/10]> Bootstrap005
## 6 <split [32/10]> Bootstrap006

head(boot_coefs)

## # A tibble: 6 × 8
##   splits          id           model  term  estimate std.error statis…¹  p.value
##   <list>          <chr>        <list> <chr>    <dbl>     <dbl>    <dbl>    <dbl>
## 1 <split [32/12]> Bootstrap001 <nls>  k        48.0       4.61    10.4  1.76e-11
## 2 <split [32/12]> Bootstrap001 <nls>  b         4.22      1.70     2.48 1.90e- 2
## 3 <split [32/14]> Bootstrap002 <nls>  k        43.2       3.37    12.8  1.04e-13
## 4 <split [32/14]> Bootstrap002 <nls>  b         4.61      1.14     4.04 3.40e- 4
## 5 <split [32/11]> Bootstrap003 <nls>  k        45.9       4.50    10.2  2.85e-11
## 6 <split [32/11]> Bootstrap003 <nls>  b         5.05      1.67     3.02 5.06e- 3
## # … with abbreviated variable name ¹ statistic

Bootstrapping the NLS models: Using the rsample
package
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We can now easily
compute and plot
bootstrap CIs!

Remember: percentile
method just takes 2.5
and 97.5 quantiles of
bootstrap sampling
distribution as bounds
of CI.

percentile_intervals <- int_pctl(boot_models, coef_info)
ggplot(boot_coefs, aes(estimate)) +
  geom_histogram(bins = 30) +
  facet_wrap( ~ term, scales = "free") +
  geom_vline(aes(xintercept = .lower), data = percentile_intervals, col = "blue
  geom_vline(aes(xintercept = .upper), data = percentile_intervals, col = "blue

Con�dence Intervals
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It's also easy to
illustrate uncertainty in
fit with this.

Let's get predicted
values with augment
from our models.

boot_aug <- 
  boot_models %>% 
  sample_n(200) %>% 
  mutate(augmented = 
           map(model, augment)) %
  unnest(augmented)

ggplot(boot_aug, aes(wt, mpg)) +
  geom_line(aes(y = .fitted, group = id), alpha = .1, col = "red") +
  geom_point() + theme_bw()

Illustrate More Uncertainty
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Last week we encountered the test MSE.

In simulation studies, we can compute it,
but in real life? It's much harder to
obtain a true test data set.

What we can do in practice, however, is
to hold out part of our data for testing
purposes.

We just set it aside at the beginning and
don't use it for training.

Several Approaches:

1. Validation Set

2. Leave-one-out cross validation (LOOCV)

3. k-fold Cross Validation (k-CV)

Cross Validation

9 / 51



Randomly divide your data into 
groups of equal size.

train model on all but last groups (folds),
compute MSE on last fold.

train model on all but penultimat fold,
compute MSE there, etc

The k-fold CV is then

K-fold Cross Validation (k-CV)
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Randomly divide your data into 
groups of equal size.

train model on all but last groups (folds),
compute MSE on last fold.

train model on all but penultimat fold,
compute MSE there, etc

The k-fold CV is then

We have to fit the model  times here.

Previous methods (LOOCV) are much
more costly in terms of computing time.

In practice one often chooses  or 
.

Let's look again at the rsample  package
as to how to set this up!

K-fold Cross Validation (k-CV)
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Splits for Bootstrap Samples

library(rsample) # already loaded...
bcars <- bootstraps(mtcars, times = 3)
head(bcars,n=3)

## # Bootstrap sampling 
## # A tibble: 3 × 2
##   splits          id        
##   <list>          <chr>     
## 1 <split [32/15]> Bootstrap1
## 2 <split [32/10]> Bootstrap2
## 3 <split [32/14]> Bootstrap3

nrow(analysis(bcars$splits[[1]]))

## [1] 32

Splits for Testing/Training

set.seed(1221)
cvcars <- vfold_cv(mtcars, v = 10, repeats = 10)
head(cvcars,n=3)

## # A tibble: 3 × 3
##   splits         id       id2   
##   <list>         <chr>    <chr> 
## 1 <split [28/4]> Repeat01 Fold01
## 2 <split [28/4]> Repeat01 Fold02
## 3 <split [29/3]> Repeat01 Fold03

nrow(analysis(cvcars$splits[[1]]))

## [1] 28

nrow(assessment(cvcars$splits[[1]]))

## [1] 4

rsample package again

11 / 51



Regularized Regression and Variable Selection

What to do when you have 307 potential predictors?
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The Linear Model is Great

If we have relatively few parameters  we typically have low variance with the
linear model.

This deteriorates with larger . With  (more parameters than data points) we
cannot even compute our  with OLS.

We often look for stars ***  when deciding which variable should be part of a model.
Correct only under certain assumptions.

Despite ***  we don't discover whether variable  is an important predictor of the

outcome.

OLS will never deliver an estimate  exactly zero.

Example?
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307 predictors! Which
ones to include?

Wait, we still have p-
values!

Can't we just take all
predictors with p <
0.05?

why not p < 0.06?

why not p < 0.07?

307 predictors for Sale_Price

a = AmesHousing::make_ames()  # house price sales
lma = lm(Sale_Price ~ . , data = a) # include all variables
broom::tidy(lma) %>% select(p.value) %>% arrange(desc(p.value)) %>%
  ggplot(aes(x = row_number(.),y = p.value)) + geom_point() + theme_bw() + geom_hline(yintercept = 0.05, color = 
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AmesHousing

# from: https://uc-r.github.io/regularized_regression
# Create training (70%) and 
# test (30%) sets for the AmesHousing::make_ames() data.

set.seed(123)
ames_split <- initial_split(a, prop = .7, strata = "Sale_Price")
ames_train <- training(ames_split)
ames_test  <- testing(ames_split)

# extract model matrix from both: code each factor level as a dummy
# don't take the intercept ([,-1])
ames_train_x <- model.matrix(Sale_Price ~ ., ames_train)[, -1]
ames_train_y <- log(ames_train$Sale_Price)

ames_test_x <- model.matrix(Sale_Price ~ ., ames_test)[, -1]
ames_test_y <- log(ames_test$Sale_Price)

# What is the dimension of of your feature matrix?
dim(ames_train_x)

## [1] 2049  308
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Lots of multicollinearity
among our predictors.

This will inflate
variance of our
estimates.

Here is the correlation
matrix of the first 60
predictors:

ca = cor(ames_train_x[,1:60])
corrplot::corrplot(ca,
                   tl.pos = "n")

Darker colours spell
trouble!

House Price Data: AmesHousing Package
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We can add a penalty P to the OLS
objective:

P will punish the algorithm for choosing
too large parameter values

Looking closely at P is beyond our scope
here.

But we will show how to use two
popular methods.

Regularization: Add a Penalty
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We can add a penalty P to the OLS
objective:

P will punish the algorithm for choosing
too large parameter values

Looking closely at P is beyond our scope
here.

But we will show how to use two
popular methods.

Ridge Objective:  penalty

 is a tuning parameter:  is no
penalty.

Lasso Objective:  penalty

Regularization: Add a Penalty
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Ridge Regression with the glmnet package
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Parameter alpha   governs

whether we do Ridge or Lasso. Ridge
with alpha = 0 .

Using the glmnet::glmnet  function by
default standardizes all regressors

glmnet::glmnet  will run for many values
of .

# Apply Ridge regression to ames data
library(glmnet)
ames_ridge <- glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 0
)

plot(ames_ridge, xvar = "lambda")

Ridge in AmesHousing
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Each line is the point estimate for one
regressor at a given 

All regressors are non-zero, but get
arbitrarily small at high . We compress
considerable variation in estimates
(remember those are all standardized!)

So, what's the right  then?

 is a tuning parameter.

Let's do CV to find out the best .

Ridge in AmesHousing
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Remember what we said about
Overfitting: there is a sweet spot that
balances flexibility (here: many
regressors) and interpretability (here:
few regressors).

Let's do k-fold CV to compute our test
MSE, built in with glmnet::cv.glmnet :

# Apply CV Ridge regression to ames data
ames_ridge <- cv.glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 0
)

# plot results
plot(ames_ridge)

Tuning Ridge
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The dashed vertical lines mark the
minimum MSE and the largest  within
one std error of this minimum (to the
right of the first lines).

We would choose a lambda withing
those two dashed lines.

Remember that this keeps all variables.

Tuning Ridge
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Lasso with alpha = 1 .

You will see that this forces some
estimates to zero.

Hence it reduces the number of
variables in the model

ames_lasso <- glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 1
)
# plot results
plot(ames_lasso, xvar = "lambda")

lasso (least absolute shrinkage and selection operator)
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Huge variation in estimates gets
shrunken.

The top bar of the graph shows number
of active variables for each .

Again: What's the right  then?

Again: let's look at the test MSE!

lasso (least absolute shrinkage and selection operator)
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Let's use the same function as before.

Let's do k-fold CV to compute our test
MSE, built in with glmnet::cv.glmnet :

ames_lasso <- cv.glmnet(
  x = ames_train_x,
  y = ames_train_y,
  alpha = 1
)
# plot results
plot(ames_lasso)

Tuning Lasso
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min(ames_lasso$cvm)       # minimum MSE

## [1] 0.02255555

ames_lasso$lambda.min     # lambda for this min MSE

## [1] 0.00328574

# 1 st.error of min MSE
ames_lasso$cvm[ames_lasso$lambda == ames_lasso$lambda

## [1] 0.02512657

ames_lasso$lambda.1se  # lambda for this MSE

## [1] 0.01003418

So: at MSE-minimizing , we went down
to < 139 variables.

Going 1 SE to the right incurs slightly
higher MSE, but important reduction in
variables!

Tuning Lasso
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Let's look again at coef estimates

The red dashed lines are minimal  and
lambda.1se

Depending on your task, the second line
may be acceptable.

Lasso predictors at optimal MSEs
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So, the lasso really selects variables.

Which ones are the most influental
variables then?

Remember, this is about finding the best
predictive model.

lasso vars
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Unsupervised Methods

29 / 51



Unsupervised Methods

Remember: in this class of methods we don't have a designated output  for our input
variables .

We will talk about about Clustering methods

We won't have time for Principal Component Analysis (PCA).

Both of those are useful to summarise high-dimensional datasets.
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K-means Clustering
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Now Try Yourself !

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Denote  the -th cluster.

Each observation is assigned to exactly
one cluster.

Clusters are non-overlapping.

A good clustering is one where within-
cluster variation is as small as possible.

Let's write  as some measure of

within cluster variation.

K-means tries to solve the problem of
how to setup the clusters (i.e. how to
assign observations to clusters), in order
to...

What is k-Means Clustering Doing?

43 / 51



Denote  the -th cluster.

Each observation is assigned to exactly
one cluster.

Clusters are non-overlapping.

A good clustering is one where within-
cluster variation is as small as possible.

Let's write  as some measure of

within cluster variation.

K-means tries to solve the problem of
how to setup the clusters (i.e. how to
assign observations to clusters), in order
to...

...minimize the total sum of :

A common choice for  is the

squared Euclidean Distance:

where  is the number of elements of 

.

What is k-Means Clustering Doing?
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tidymodels k-means clustering

library(tidymodels)

set.seed(27)

centers <- tibble(
  cluster = factor(1:3), 
  num_points = c(100, 150, 50),  # number points in each cluster
  x1 = c(5, 0, -3),              # x1 coordinate of cluster center
  x2 = c(-1, 1, -2)              # x2 coordinate of cluster center
)

labelled_points <- 
  centers %>%
  mutate(
    x1 = map2(num_points, x1, rnorm),
    x2 = map2(num_points, x2, rnorm)
  ) %>% 
  select(-num_points) %>% 
  unnest(cols = c(x1, x2))

ggplot(labelled_points, aes(x1, x2, color = cluster)) +
  geom_point(alpha = 0.3)
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tidymodels k-means clustering

45 / 51



base R: kmeans

points <- 
  labelled_points %>% 
  select(-cluster)

kclust <- kmeans(points, centers = 3)
kclust

## K-means clustering with 3 clusters of sizes 148, 51, 101
## 
## Cluster means:
##            x1        x2
## 1  0.08853475  1.045461
## 2 -3.14292460 -2.000043
## 3  5.00401249 -1.045811
## 
## Clustering vector:
##   [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [38] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
##  [75] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
## [260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [297] 2 2 2 2
## 
## Within cluster sum of squares by cluster:
## [1] 298.9415 108.8112 243.2092
## (between SS / total SS = 82 5 %)
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How many clusters k to choose?

kclusts <- 
  tibble(k = 1:9) %>%
  mutate(
    kclust = map(k, ~kmeans(points, .x)),
    tidied = map(kclust, tidy),
    glanced = map(kclust, glance),
    augmented = map(kclust, augment, points)
  )
kclusts

## # A tibble: 9 × 5
##       k kclust   tidied           glanced          augmented         
##   <int> <list>   <list>           <list>           <list>            
## 1     1 <kmeans> <tibble [1 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 2     2 <kmeans> <tibble [2 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 3     3 <kmeans> <tibble [3 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 4     4 <kmeans> <tibble [4 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 5     5 <kmeans> <tibble [5 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 6     6 <kmeans> <tibble [6 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 7     7 <kmeans> <tibble [7 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 8     8 <kmeans> <tibble [8 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
## 9     9 <kmeans> <tibble [9 × 5]> <tibble [1 × 4]> <tibble [300 × 3]>
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How many clusters k to choose?

Teasing out different datasets for plotting

notice the unnest  calls are useful for list  columns

clusters <- 
  kclusts %>%
  unnest(cols = c(tidied))

assignments <- 
  kclusts %>% 
  unnest(cols = c(augmented))

clusterings <- 
  kclusts %>%
  unnest(cols = c(glanced))
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p1 <- 
  ggplot(assignments, aes(x = x1, y = x2)) +
  geom_point(aes(color = .cluster), alpha = 0.8) + 
  facet_wrap(~ k)

How many clusters k to choose?
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Look for the Elbow!

Here at k = 3  the
reduction in 

 slows down

a lot.

More flexibility (more
clusters) overfits the
data beyond a certain
point (the elbow)

How many clusters k to choose? The Elbow Method

# the Elbow plot
ggplot(clusterings, aes(k, tot.withinss)) +
  geom_line() + ylab("Sum of W(C_k) over k") +
  geom_point()
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END
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