

ScPoEconometrics: Advanced

Intro to Statistical Learning

Bluebery Planterose SciencesPo Paris 2023-04-11

Intro to Statistical Learning: ISLR

- This set of slides is based on the amazing book *An introdution to statistical learning* by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani.
- I'll freely use some of their plots. They say that is ok if I put:

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

- Thanks so much for putting that resource online **for free**.
- We will try to look at their material with our econometrics background. It's going to be fun!

What is Statistical Learning?

- We want to learn the relationship Y ~ X, where X has p components.
- We assume a general form like

 $Y = f(X) + \epsilon$

- *f* is a fixed function, but we don't know what it looks like.
- We want an **estimate** \hat{f} for it.

What is Statistical Learning?

- We want to learn the relationship Y ~ X, where X has p components.
- We assume a general form like

 $Y = f(X) + \epsilon$

- *f* is a fixed function, but we don't know what it looks like.
- We want an **estimate** \hat{f} for it.

• Assume $E[\epsilon|x]=0!$

- I.e. we assume to have an **identified** model
- We have done this before already.
- But we restricted ourselves to OLS estimation. There are so many ways to estimate f!

An Example of f

- The **blue** shape is true relationship f
- Red dots are observed data: Y
- Red dots are off blue shape because of ϵ

4/33

What Do You Want To Do with your \widehat{f} ?

Fundamental Difference: (Sealight exaggerations ahead!)

Prediction (Machine Learning, AI)

- generate $\hat{Y} = \hat{f}\left(X
 ight)$
- \hat{f} is a **black box**
- We don't know or care *why* it works as long as the prediction is good

What Do You Want To Do with your \hat{f} ?

Fundamental Difference: (Sealight exaggerations ahead!)

Prediction (Machine Learning, AI)

- generate $\hat{Y} = \hat{f}\left(X
 ight)$
- \hat{f} is a **black box**
- We don't know or care *why* it works as long as the prediction is good

Inference (ECON)

- Why does Y respond to X? (Causality)
- How does Y respond to X_p ? Interpret parameter estimates
- \hat{f} is not a **black box**.
- (Out of sample) Prediction often secondary concern.

What makes a Good prediction?

Remember the data generating process (DGP):

 $Y = f(X) + \epsilon$

- There are two (!) **Errors**:
 - 1. Reducible error \hat{f} 2. Irredicuble error ϵ
- We can work to improve the Reducible error
- The Irreducible error is a feature of the DGP, hence, nature. Life. Karma. Measurement incurs error.

What makes a Good prediction?

Remember the data generating process (DGP):

$$Y = f(X) + \epsilon$$

- There are two (!) **Errors**:
 - 1. Reducible error \hat{f} 2. Irredicuble error ϵ
- We can work to improve the Reducible error
- The Irreducible error is a feature of the DGP, hence, nature. Life. Karma. Measurement incurs error.

- The squared error for a given estimate \hat{f} is $E[Y \hat{Y}]^2$: Similar to mean squared residuals!
- One can easily show that that this factors as

$$E[f(X) + \epsilon - \hat{f}(X)]^2 = [\underbrace{f(X) - \hat{f}(X)}_{ ext{Reducible}}]^2 + \underbrace{Var(\epsilon)}_{ ext{Irreducible}}$$

First Classification of Estimators

In general:

Nonlinear Models

- More nonlinear models are able to get closer to the data.
- Hence, they are good predictors
- But hard to **interpret**

Linear Models

- Easy to Interpret
- Less tight fit to data
- worse Prediction

How to Estimate an f?

Training Data

- 1. n data points $i=1,\ldots,n$
- 2. y_i is *i*'s response
- 3. $X_i = (x_{i1}, \ldots, x_{ip})$ are predictors
- 4. Data: $(X_1,y_1),\ldots,(X_n,y_n)$

(Up until now, *training* data was the only data we have encountered!)

Estimate \hat{f} = Learn \hat{f}

There are two broad classes of learning \hat{f} :

- 1. Parametric Learning
- 2. Non-Parametric Learning

Parametric Methods

Parametrics Methods

Procedure

1. We make a **parametric assumption**, i.e. we write down how we think *f* looks like. E.g.

$$Y=eta_0+eta_1x_1+\dots+eta_px_p$$

Here we only have to find p+1 numbers!

2. We *train* the model, i.e. we choose the β 's. We are pretty good at that -> OLS \triangleleft

Potential Issues

- Typically, our model is **not** the true DGP. Why we want a model in the first place.
- If our parametric assumption is a poor model of the true DGP, we will be far away from the truth. Kind of...logical.

A Parametric Model for f

- The **yellow** plane is \hat{f} :
 - $y=eta_0+eta_1 ext{educ}+eta_2 ext{sen}$
- It's easy to interpret (need only 3 β 's to draw this!)
- Incurs substantial training error because it's a rigid plane (go back to blue shape to check true *f*).

Non-Parametric Methods

- We make a no explicit assumption about functional form.
- We try to get *as close as possible* to the data points.
- We try to do that under some contraints like:
 - Not too rough
 - $\circ~$ Not too wiggly

- Usually provides a good fit to the training data.
- **But** it does *not* reduce the number of parameters!
- Quite the contrary. The number of parameters increases so fast that those methods quickly run into feasibility issues (your computer can't run the model!)

A Non-Parametric Model for f

- The **yellow** plane is a thin-plate spline
- This clearly captures the shape of the true f (the blue one) better: Smaller Training Error.
- But it's harder to interpret. Is income increasing with Seniority?

Overfitting: Choosing *Smoothness*

- We can choose the degree of flexibility or smoothness of our spline surface.
- Here we increased flexibility so much that there is zero training error: spline goes through all points!
- But it's a much wigglier surface now than before! Even harder to interpret.

Overfitting: Choosing *Smoothness*

Smooth, not wiggly

Smooth but high variance (wiggly!)

Overfitting: Over-doing it

- You can see that the researcher has an active choice to make here: *how smooth*?
- Parameters which guide choices like that are called **tuning parameters**.
- As f̂ becomes too variable, we say there is overfitting: The model tries too hard to fit patterns in the data, which are not part of the true f!

What Method To Aim For?

Why would we not always want the most flexible method available?

- that's a reasonable question to ask.
- The previous slide already gave a partial answer: more flexbility generally leads to more variability.
- If we want to use our model outside of our training data set, that's an issue.

Classifying Methods 1: **flexibility** vs **interpretability**

- This graph offers a nice classification of statistical learning methods in flexibility vs interpretability space.
- Sometimes it's obvious what the right choice is for your application.
- But often it's not. It's a more complicated tradeoff than the picture suggests.
- (It's a very helpful picture!)
- We will only be touching upon a small number of those. They are all nicely treated in the ISLR book though!

Classifying Methods 2: Supervised vs Unsupervised Learning

Supervised Learning

- We have measures of input x and output y
- We could *predict* new *y*'s
- Or infer things about Y ~ X
- Regression or Classification are typical tasks

Unsupervised Learning

- We have **no** measure of output *y*!
- Only a bunch of *x*'s
- We are interested in *grouping* of those *x* (cluster analysis)

Clustering Example

- Sometimes clustering is easy: in the left panel the data fall naturally into groups.
- When data overlap, it's harder: right panel

Assessing Model Accuracy

What is a good model?

Quality of Fit: the Mean Squard Error

 We know the mean squared error (MSE) already:

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{f}\left(x_i
ight))^2$$

• We encountered the closely related **sum of squared residuals (SSR)**:

$$SSR = \sum_{i=1}^n (y_i - \hat{f}\left(x_i
ight))^2$$

• As we know, OLS minimizes the SSR. (minimizing SSR or MSE yields the same OLS estimates.)

Quality of Fit: the Mean Squard Error

 We know the mean squared error (MSE) already:

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{f}\left(x_i
ight))^2$$

• We encountered the closely related **sum of squared residuals (SSR)**:

$$SSR = \sum_{i=1}^n (y_i - \hat{f}\left(x_i
ight))^2$$

• As we know, OLS minimizes the SSR. (minimizing SSR or MSE yields the same OLS estimates.)

- However, what MSE
 really is: it's the training MSE! It's computed using the same data we used to compute
 f
 !
- Suppose we used data on last 6 months of stock market prices and we want to predict future prices. *We don't really care how well we can predict the past prices*.
- In general, we care about how \hat{f} will perform on **unseen** data. We call this **test data**.

Training MSE vs Test MSE

Training

• We have a *training data set*

 $\{(y_1,x_1),\ldots,(y_n,x_n)\}$

we use those n observations to find the function q that minimizes the Training MSE:

$$\hat{f}\,=rg\min_{q}MSE=rac{1}{n}\sum_{i=1}^{n}(y_i-q(x_i))^2$$

Training MSE vs Test MSE

Training

• We have a *training data set*

 $\{(y_1,x_1),\ldots,(y_n,x_n)\}$

we use those n observations to find the function q that minimizes the Training MSE:

$$\hat{f} = rg\min_{q} MSE = rac{1}{n}\sum_{i=1}^n (y_i-q(x_i))^2$$

Testing

- We want to know whether \hat{f} will perform well on *new* data.
- Suppose (y_0, x_0) is unseen data in particular, we haven't used it to train our model!
- We want to know the magnitude of the **test MSE**:

$$E[(y_0 - \hat{f}\,(x_0))^2]$$

A Problem of MSEs

- In many cases we don't have a true test data set at hand.
- Most methods therefore try to minimize the training MSE. (OLS does!)
- At first sight this seems really reasonable.

A Problem of MSEs

- In many cases we don't have a true test data set at hand.
- Most methods therefore try to minimize the training MSE. (OLS does!)
- At first sight this seems really reasonable.

- The problem is that test and training MSE are less closely related than one might think!
- Very small training MSEs might go together with pretty big test MSEs!
- That is, most methods are *really* good at fitting the training data, but they fail to generalize to outside of that set of point!

Simulation: We *know* the test data!

- In an artifical setting we now the test data because we know the true *f*.
- Here Solid black line. 👉 🥿
- Increasing flexibility mechanically reduces training error (grey curve in right panel.)
- However not the test MSE, in general (red curve!)

Simulation: App!

• Let's look at our app online or ScPoApps::launchApp("bias_variance_tradeoff")

Bias Variance Tradeoff

So! A Tradeoff at Last!

- What's going on here?
- Initially, increasing flexibility provides a better fit to the observed data points, decreasing the training error.
- That means that also the test error decreases for a while.
- As soon as we start **overfitting** the data points, though, the test error starts to increase again!
- At very high flexibility, our method tries to fit patterns in the data which are *not* part of the true f (the black line)!
- To make matters worse, the extent of this phenomenon will depend on the shape of the underlying true f!

Almost linear f

- In this example, the true *f* is almost linear.
- The inflexible method does well!
- Increasing flexibility incurs large testing MSE.

2

5

10

Flexibility

20

Highly Non-linear f

- In this example, the true *f* is very non linear.
- The inflexible method does very poorly in both trainign and testing MSE.
- the model at 10 degrees of freedom performs best here.

Formalizing the Bias-Variance-Tradeoff

• We can decompose the expected test MSE as follows:

$$E(y_0-\hat{f}\left(x_0
ight))^2=Var(\hat{f}\left(x_0
ight))+\left[ext{Bias}(\hat{f}\left(x_0
ight))
ight]^2+Var(\epsilon)$$

- From this we can see that we have to minimize **both** variance and bias when chooseing a suitable method.
- We have seen before that those are competing forces in some situations.
- Notice that the best we could achieve is $Var(\epsilon)>0$ since that is a feature of our DGP.

Bias-Variance-Tradeoff: What are Bias and Variance?

Variance

- How much would \hat{f} change if we estimated it using a **different** data set?
- Clearly we expect some variation when using different samples (sampling variation), but not too much.
- Flexibel models: moving just a single data point will result in a large change in \hat{f} .

Bias

- The difference between \hat{f} and f (notice the missing ϵ).
- We approximate a potentially very complex real phenomenon by a *simple* model, e.g. linear model.
- If true model highly non-linear, linear model will be biased.
- General: more flexible, lower bias but higher variance.

Bias Variance Tradeoff vs Flexibility

- Here 👉 we illustrate for 🖏 preceding 3 true *f*'s
- Precise Tradeoff depends on f's shape.
- Bias declines with flexibility.
- Test MSE is U-shaped, Var increasing.

MSE Bias

- bluebery.planterose@sciencespo.fr
- ✤ Original Slides from Florian Oswald
- 🗞 Book
- O @ScPoEcon

