

ScPoEconometrics: Advanced

Binary Response Models

Bluebery Planterose SciencesPo Paris 2023-04-04

Where Are We At?

Last Time

- Panel Data Estimation
- The fixed effects estimator
- fixest package

Where Are We At?

Last Time

- Panel Data Estimation
- The fixed effects estimator
- fixest package

Today

- 1. Binary Response Models!
- 2. Another cool app! 😎

Binary Response Models

Binary Response Models

So far, our models looked like this:

$$egin{aligned} y &= b_0 + b_1 x + e \ e &\sim N\left(0, \sigma^2
ight) \end{aligned}$$

- The distributional assumption on *e*:
- In priniciple implies that $y \in \mathbb{R}.$
- test scores, earnings, crime rates, etc. are all continuous outcomes.

Binary Response Models

So far, our models looked like this:

$$egin{aligned} y &= b_0 + b_1 x + e \ e &\sim N\left(0, \sigma^2
ight) \end{aligned}$$

- The distributional assumption on *e*:
- In priniciple implies that $y \in \mathbb{R}$.
- test scores, earnings, crime rates, etc. are all continuous outcomes.

But some outcomes are clearly binary (i.e., either TRUE or FALSE):

- You either work or you don't,
- You either have children or you don't,
- You either bought a product or you didn't,
- You flipped a coin and it came up either heads or tails.

Binary Outcomes

- Outcomes restricted to FALSE vs TRUE, or 0 vs 1.
- We'd have $y\in\{0,1\}.$
- In those situations we are primarily interested in estimating the **response probability** or the **probability of success**:

$$p(x) = \Pr(y = 1|x)$$

- how does p(x) change as we change x?
- we ask

If we increase x by one unit, how would the probability of y = 1 change?

Remembering Bernoulli Fun

Remember the Bernoulli Distribution?: We call a random variable $y \in \{0,1\}$ such that

$$egin{aligned} & \Pr(y=1) = p \ & \Pr(y=0) = 1-p \ & p \in [0,1] \end{aligned}$$

a Bernoulli random variable.

Remembering Bernoulli Fun

Remember the Bernoulli Distribution?: We call a random variable $y \in \{0,1\}$ such that

$$egin{aligned} & \Pr(y=1) = p \ & \Pr(y=0) = 1-p \ & p \in [0,1] \end{aligned}$$

a Bernoulli random variable.

For us: condition those probabilities on a covariate x

$$egin{aligned} &\Pr(y=1|X=x) = p(x) \ &\Pr(y=0|X=x) = 1-p(x) \ &p(x) \in [0,1] \end{aligned}$$

• Partcularly: *expected value* (i.e. the average) of Y given x

E[y|x]=p(x) imes 1+(1-p(x)) imes 0=p(x)

 We often model conditional expectations 65

The Linear Probability Model (LPM)

• The simplest option. Model the response probability as

$$\Pr(y=1|x)=p(x)=eta_0+eta_1x_1+\dots+eta_Kx_K$$

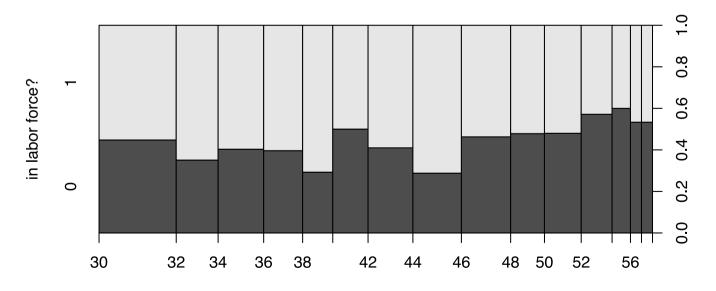
• Interpretation: a 1 unit change in x_1 , say, results in a change of p(x) of β_1 .

Example: Mroz (1987)

- Female labor market participation
- How does inlf (*in labor force*) status depend on non-wife household income, her education, age and number of small children?

Mroz 1987

```
data(mroz, package = "wooldridge")
plot(factor(inlf) ~ age, data = mroz,
    ylevels = 2:1,
    ylab = "in labor force?")
```



age

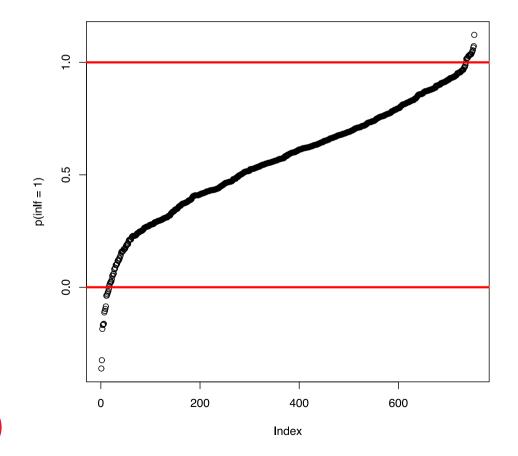
Running the LPM

A tibble: 8 × 5

##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	0.322	0.486	0.662	5.08e- 1
##	2	nwifeinc	-0.00343	0.00145	-2.36	1.86e- 2
##	3	educ	0.0375	0.00735	5.10	4.33e- 7
##	4	exper	0.0383	0.00577	6.63	6.44e-11
##	5	I(exper^2)	-0.000565	0.000189	-2.98	2.96e- 3
##	6	age	-0.00112	0.0225	-0.0497	9.60e- 1
##	7	I(age^2)	-0.000182	0.000258	-0.706	4.80e- 1
##	8	kidslt6	-0.260	0.0341	-7.64	6.72e-14

- **identical** to our previous linear regression models
- Just inlf takes on only two values, 0 or 1.
- Results: non-wife income increases by 10 (i.e 10,000 USD), p(x) falls by 0.034 (that's a small effect!),
- an additional small child would reduce the probability of work by 0.26 (that's large).
- So far, so simple. 🤞

LPM: Predicting negative probabilities?!



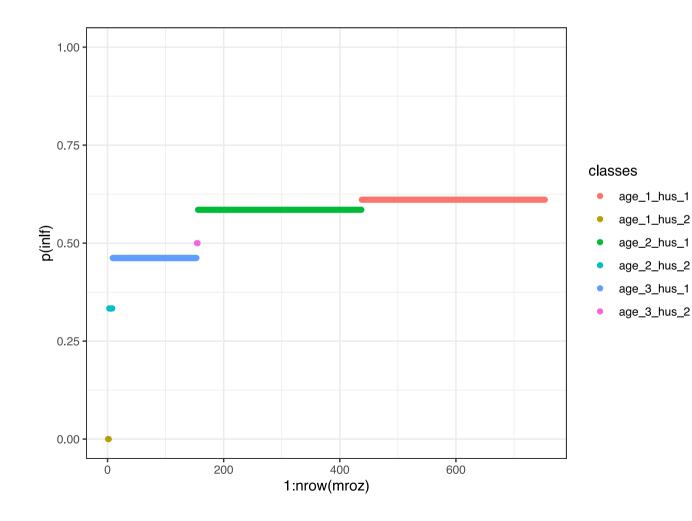
- LPM predictions of p(x) are not guaranteed to lie in unit interval [0, 1].
- Remember: $e \sim N\left(0,\sigma^2
 ight)$
- here, some probs smaller than zero!
- Particularly annoying if you want predictions: What is a probability of -0.3?

LPM in Saturated Model: No Problem!

## #	A tibble: 6 × 5				
##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	0.611	0.0277	22.0	2.98e-83
## 2	classesage_1_hus_2	-0.611	0.350	-1.75	8.11e- 2
## 3	classesage_2_hus_1	-0.0257	0.0404	-0.635	5.25e- 1
## 4	classesage_2_hus_2	-0.277	0.203	-1.37	1.72e- 1
## 5	classesage_3_hus_1	-0.149	0.0494	-3.01	2.72e- 3
## 6	classesage_3_hus_2	-0.111	0.350	-0.317	7.51e- 1

- *saturated model* : only have dummy explanatory variables
- Each class: p(x) within that cell.

LPM in Saturated Model: No Problem!



- Each line segment: p(x)within that cell.
- E.g. women from the youngest age category and lowest husband income (class age_1_hus_1) have the highest probability of working (0.611).

Task 1 (10 Minutes): Saturated LPM

Define a *saturated* LPM as before

$$\Pr(y=1|x)=p(x)=eta_0+eta_1x_1+\dots+eta_Kx_K$$

but restrict all $x_j \in \{0, 1\}$.

- 1. Create a binary indicator age_lt_50 = 1 for age smaller than 50 and 0 else and same for husage_lt_50.
- 2. Run a full interactions model (use the * syntax in your formula) of age_lt_50 = 1 interacted with husage_lt_50. I.e. run the following LPM:

 $\Pr(y=1|x) = \beta_0 + \beta_1 \text{age_lt_50} + \beta_2 \text{husage_lt_50} + \beta_3 \times \text{age_lt_50} \times \text{husage_lt_50}$

3. predict Pr(y = 1|x) for each observation using your LPM.

4. What's the probability for a woman younger than 50 with a husband younger than 50?

5. make a plot similar to the one on the previous slide.

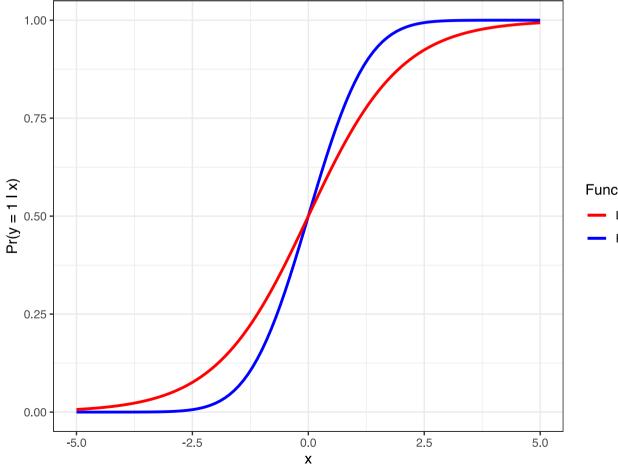
Nonlinear Binary Response Models

In this class of models we change the way we model the response probability p(x). Instead of the simple linear structure from above, we write

$$\Pr(y=1|x)=p(x)=G\left(eta_0+eta_1x_1+\dots+eta_Kx_K
ight)$$

- *almost* identical to LPM!
- except the *linear index* $\beta_0 + \beta_1 x_1 + \cdots + \beta_K x_K$ is now inside some function $G(\cdot)$.
- Main property of G: transforms any $z\in\mathbb{R}$ into a number in the interval (0,1).
- This immediately solves our problem of getting weird predictions for probabilities.

$G:\operatorname{\textbf{probit}}$ and $\operatorname{\textbf{logit}}$



For both **probit** and **logit** we see that:

1. any value x results in a value p(x) between 0 and 1

Function G

- Logit
- 2. the higher x, the higher the resulting p(x).
- 3. Logit has *fatter tails* than Probit.

Running probit and logit in R: the glm function

- We use the glm function to run a **generalized linear model**
- This *generalizes* our standard linear model. We have to specify a family and a link:

modelsummary::modelsummary(list("probit" = probit,"log

	probit	logit
(Intercept)	0.707	1.136
	(0.248)	(0.398)
age	-0.013	-0.020
	(0.006)	(0.009)
Num.Obs.	753	753
AIC	1028.9	1028.9
BIC	1038.1	1038.1
Log.Lik.	-512.442	-512.431
F	4.828	4.858
RMSE	0.49	0.49

- probit coefficient for age is -0.013
- logit: -0.02 for logit,
- impact of age on the prob of working is negative
- However, **how** negative? We can't tell!

The model is

$$\Pr(y=1| ext{age}) = G\left(xeta
ight) = G\left(eta_0+eta_1 ext{age}
ight)$$

and the *marginal effect* of age on the response probability is

$$rac{\partial \mathrm{Pr}(y=1|\mathrm{age})}{\partial \mathrm{age}} = g\left(eta_0 + eta_1\mathrm{age}
ight)eta_1$$

- function g is defined as $g(z) = \frac{dG}{dz}(z)$ the first derivative function of G (i.e. the *slope* of G).
- given *G* that is nonlinear, this means that *g* will be non-constant. You are able to try this out yourself using this app here:

ScPoApps::launchApp("marginal_effects_of_logit_probit")

So you can see that there is not one single *marginal effect* in those models, as that depends on *where we evaluate* the previous expression. In practice, there are two common approaches:

1. report effect at the average values of *x*:

 $g(ar{x}eta)eta_j$

2. report the sample average of all marginal effects:

$$rac{1}{n}\sum_{i=1}^N g(x_ieta)eta_j$$

Thankfully there are packages available that help us to compute those marginal effects fairly easily. One of them is called mfx, and we would use it as follows:


```
f <- "inlf ~ age + kidslt6 + nwifeinc" # setup a formula</pre>
glms <- list()
glms$probit <- glm(formula = f,</pre>
                     data = mroz,
                     family = binomial(link = "probit"))
glms$logit <- glm(formula = f,</pre>
                     data = mroz,
                     family = binomial(link = "logit"))
# now the marginal effects versions
glms$probitMean <- mfx::probitmfx(formula = f,</pre>
                     data = mroz, atmean = TRUE)
glms$probitAvg <- mfx::probitmfx(formula = f,</pre>
                     data = mroz, atmean = FALSE)
glms$logitMean <- mfx::logitmfx(formula = f,</pre>
                      data = mroz, atmean = TRUE)
glms$logitAvg <- mfx::logitmfx(formula = f,</pre>
                     data = mroz, atmean = FALSE)
```


	probit	logit	probitMean	probitAvg	logitMean	logitAvg
(Intercept)	2.080***	3.394***	2.080***	2.080***	3.394***	3.394***
	(0.309)	(0.516)	(0.309)	(0.309)	(0.516)	(0.516)
age	-0.035***	-0.057***	-0.014^{***}	-0.013***	-0.014***	-0.013***
	-0.035***	-0.057***	-0.014^{***}	-0.013***	-0.014***	-0.057***
	-0.035***	-0.057***	-0.014^{***}	-0.013***	-0.057***	-0.013***
	-0.035***	-0.057***	-0.014^{***}	-0.013***	-0.057***	-0.057***
	-0.035***	-0.057***	-0.014^{***}	-0.035***	-0.014^{***}	-0.013***
	-0.035***	-0.057***	-0.014^{***}	-0.035***	-0.014***	-0.057***
	-0.035***	-0.057***	-0.014^{***}	-0.035***	-0.057***	-0.013***
	-0.035***	-0.057***	-0.014^{***}	-0.035***	-0.057***	-0.057***
	-0.035***	-0.057***	-0.035***	-0.013***	-0.014***	-0.013***
	-0.035***	-0.057***	-0.035***	-0.013***	-0.014***	-0.057***
	U U3C***	<u> </u>	U U3C***	<u>በ በ12***</u>	<u> </u>	<u> በ በ12***</u>

21/27

Goodness of Fit in Binary Models

GOF in Binary Models

- There is no universally accepted R^2 for binary models.
- We can think of a *pseudo* R^2 which compares our model to one without any regressors:

glms\$probit0 <- update(glms\$probit, formula = . ~ 1) # intercept model only
1 - as.vector(logLik(glms\$probit)/logLik(glms\$probit0))</pre>

[1] 0.07084972

GOF in Binary Models

- There is no universally accepted R^2 for binary models.
- We can think of a *pseudo* R^2 which compares our model to one without any regressors:

```
glms$probit0 <- update(glms$probit, formula = . ~ 1) # intercept model only
1 - as.vector(logLik(glms$probit)/logLik(glms$probit0))</pre>
```

```
## [1] 0.07084972
```

- But that's not super informative (unlike the standard R^2). Changes in likelihood value are highly non-linear, so that's not great.
- Let's check **accuracy** what's the proportion correctly predicted! round(fitted(x)) assigns 1 if the predicted prob > 0.5.

```
prop.table(table(true = mroz$inlf, pred = round(fitted(glms$probit))))
```

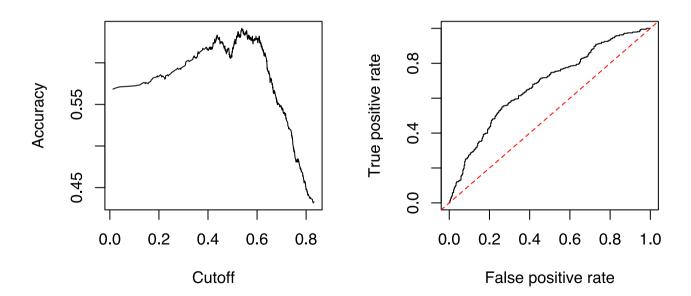
```
## pred
## true 0 1
## 0 0.1699867 0.2616202
## 1 0.1221780 0.4462151
```


- The 0.5 cutoff is arbitrary. What if all predicted probs are > 0.5 but in the data there are about 50% of zeros?
- Let's choose an *arbitrary cutoff* $c \in (0,1)$ and check accuracy for each value. This gives a better overview.

- The 0.5 cutoff is arbitrary. What if all predicted probs are > 0.5 but in the data there are about 50% of zeros?
- Let's choose an *arbitrary cutoff* $c \in (0,1)$ and check accuracy for each value. This gives a better overview.
- Also, we can confront the **true positives rate** (TPR) with the **false positives rate** (FPR).
 - 1. TPR: number of women correctly predicted to work divided by num of working women.
 - 2. FPR: number of women incorrectly predicted to work divided by num of nonworking women.

- The 0.5 cutoff is arbitrary. What if all predicted probs are > 0.5 but in the data there are about 50% of zeros?
- Let's choose an *arbitrary cutoff* $c \in (0,1)$ and check accuracy for each value. This gives a better overview.
- Also, we can confront the **true positives rate** (TPR) with the **false positives rate** (FPR).
 - 1. TPR: number of women correctly predicted to work divided by num of working women.
 - 2. FPR: number of women incorrectly predicted to work divided by num of nonworking women.
- Plotting FPR vs TPR for each c defines the **ROC** (Receiver Operating Characteristics) Curve.
- A good model has a ROC curve in the upper left corner: FPR = 0, TPR = 1.

library(ROCR)
pred <- prediction(fitted(glms\$probit), mroz\$inlf)
par(mfrow = c(1,2), mar = lowtop)
plot(performance(pred,"acc"))
plot(performance(pred,"tpr","fpr"))
abline(0,1,lty = 2, col = "red")</pre>



- Best accuracy at around c=0.6
- ROC always above 45 deg line. Better than random assignment (flipping a coin)! Yeah!

Task 2 (10 Minutes): SwissLabor

- 1. Load the SwissLabor Dataset from the AER package with data(SwissLabor, package =
 "AER")
- 2. skim the data to get a quick overview. How many foreigners are in the data?
- 3. Run a probit model of participation on all other variables plus age squared. Which age has the largest impact on participation?
- 4. What is the marginal effect at the mean of all x of being a foreigner on participation?
- 5. Produce a ROC curve of this probit model and discuss it!

- bluebery.planterose@sciencespo.fr
- ✤ Original Slides from Florian Oswald
- 🗞 Book
- O @ScPoEcon

