

ScPoEconometrics: Advanced Instrumental Variables - Applications

Bluebery Planterose SciencesPo Paris 2023-03-07

Status

What Did we Do Last Time?

- We learned about John Snow's grand experiment in London 1850.
- We used his story to motivate the IV estimator.
- You took a quiz about some IV aspects.

Status

What Did we Do Last Time?

- We learned about John Snow's grand experiment in London 1850.
- We used his story to motivate the IV estimator.
- You took a quiz about some IV aspects.

Today

- We'll look at further IV applications.
- We introduce an extension called *Two Stage Least Squares*.
- We will use R to compute the estimates.
- Finally we'll talk about *weak* instruments.

Back to school!

Returns To Schooling

- What's the causal impact of schooling on earnings?
- Jacob Mincer was interested in this important question.
- Here's his model:

 $\log Y_i = lpha +
ho S_i + eta_1 X_i + eta_2 X_i^2 + e_i$

Returns To Schooling

 $\log Y_i = lpha +
ho S_i + eta_1 X_i + eta_2 X_i^2 + e_i$

- He found an estimate for ρ of about 0.11,
- 11% earnings advantage for each additional year of education
- Look at the DAG. Is that a good model? Well, why would it not be?

Ability Bias

- We compare earnings of men with certain schooling and work experience
- Is all else equal, after controlling for those?
- Given X,
 - Can we find differently diligent workers out there?
 - Can we find differently able workers?
 - Do family connections of workers vary?

Ability Bias

- We compare earnings of men with certain schooling and work experience
- Is all else equal, after controlling for those?
- Given *X*,
 - Can we find differently diligent workers out there?
 - Can we find differently able workers?
 - Do family connections of workers vary?

- Yes, of course. So, *all else* is not equal at all.
- That's an issue, because for OLS consistency we require the orthogonality assumption

 $E[e_i|S_i,X_i]
eq 0$

• Let's introduce **ability** A_i explicitly.

Mincer with Unobserved Ability

- In fact we have *two* unobservables: *e* and *A*.
- Of course we can't tell them apart.
- So we defined a new unobservable factor

$$u_i = e_i + A_i$$

Mincer with Unobserved Ability

- In fact we have *two* unobservables: *e* and *A*.
- Of course we can't tell them apart.
- So we defined a new unobservable factor

$$u_i = e_i + A_i$$

Mincer with Unobserved Ability

• In terms of an equation:

$$\log Y_i = lpha +
ho S_i + eta_1 X_i + eta_2 X_i^2 + ec{u_i}_{A_i + e_i}$$

- Sometimes, this does not matter, and the OLS bias is small.
- But sometimes it does and we get it totally wrong! Example.

Angrist and Krueger (1991): Birthdate is as good as Random

- Angrist and Krueger (AK91) is an influental study addressing ability bias.
- Idea:
 - 1. construct an IV that encodes *birth date of student*.
 - 2. Child born just after cutoff date will start school later!
- Suppose all children who reach the age of 6 by 31st of december 2021 are required to enroll in the first grade of school in september 2021.

Angrist and Krueger (1991): Birthdate is as good as Random

- Angrist and Krueger (AK91) is an influental study addressing ability bias.
- Idea:
 - 1. construct an IV that encodes *birth date of student*.
 - 2. Child born just after cutoff date will start school later!
- Suppose all children who reach the age of 6 by 31st of december 2021 are required to enroll in the first grade of school in september 2021.

- If born in September 2015 (i.e. 6 years prior), will be 5 years and 3/4 by the time they start school.
- If born on the 1st of January 2016 will be 6 and 3/4 years when *they* enter school in september 2022.
- However, people can drop out of school legally on their 16-th birthday!
- So, out of people who drop out, some got more schooling than others.
- AK91 construct IV *quarter of birth* dummy: affects schooling, but not related to *A*!

AK91 IV setup

- *quarter of birth* dummy *z*: affects schooling, but not related to *A*!
- In particular: whether born in 4-th quarter or not.

AK91 Estimation: Two Stage Least Squares (2SLS)

AK91 allow us to introduce a widely used variation of our simple IV estimator: **2SLS**

- 1. We estimate a **first stage model** which uses only exogenous variables (like *z*) to explain our endgenous regressor *s*.
- 2. We then use the first stage model to *predict* values of *s* in what is called the **second stage** or the **reduced form** model. Performing this procedure is supposed to take out any impact of *A* in the correlation we observe in our data between *s* and *y*.

$$egin{aligned} 1. ext{ Stage: } s_i &= lpha_0 + lpha_1 z_i + \eta_i \ 2. ext{ Stage: } y_i &= eta_0 + eta_1 \hat{s}_i + u_i \end{aligned}$$

Conditions:

- 1. Relevance of the IV: $lpha_1
 eq 0$
- 2. Independence (IV assignment as good as random): $E[\eta|z]=0$
- 3. Exogeneity (our exclusion restriction): E[u|z]=0

Let's do Angrist and Krueger (1991)!

Data on birth quarter and wages

Let's load the data and look at a quick summary

data("ak91", package = "masteringmetrics")
from the modelsummary package
datasummary_skim(data.frame(ak91),histogram = TRUE)

	Unique (#)	Missing (%)	Mean	SD	Min	Median	Max	
lnw	26732	0	5.9	0.7	-2.3	6.0	10.5	
S	21	0	12.8	3.3	0.0	12.0	20.0	
yob	10	0	1934.6	2.9	1930.0	1935.0	1939.0	h
qob	4	0	2.5	1.1	1.0	3.0	4.0	
sob	51	0	30.7	14.2	1.0	34.0	56.0	مار الأطعابي.
age	40	0	45.0	2.9	40.2	45.0	50.0	

AK91 Data Transformations

- We want to create the q4 dummy which is **TRUE** if you are born in the 4th quarter.
- create factor versions of quarter and year of birth.

AK91 Figure 1: First Stage!

Let's reproduce AK91's first figure now on education as a function of quarter of birth!

AK91 Figure 1: First Stage!

- 1. The numbers label mean education *by* quarter of birth groups.
- 2. The 4-th quarters **did** get more education in most years!
- 3. There is a general trend.

AK91 Figure 2: Impact of IV on outcome

What about earnings for those groups?

```
ggplot(ak91_age, aes(x = yob + (qob - 1) / 4, y = lnw)) +
geom_line() +
geom_label(mapping = aes(label = qob, color = q4)) +
scale_x_continuous("Year of birth", breaks = 1930:1940) +
scale_y_continuous("Log weekly wages") +
guides(label = FALSE, color = FALSE) +
theme_bw()
```


AK91 Figure 2: Impact of IV on outcome

- 1. The 4-th quarters are among the high-earners by birth year.
- 2. In general, weekly wages seem to decline somewhat over time.

Running IV estimation in R

- Several options (like always with R! 😉)
- Will use the iv_robust function from the estimatr package.
- *Robust*? Computes standard errors which are correcting for heteroskedasticity. Details here.

```
library(estimatr)
# create a list of models
mod <- list()</pre>
```

```
# standard (biased!) OLS
mod$ols <- lm(lnw ~ s, data = ak91)</pre>
```

```
# IV: born in q4 is TRUE?
# doing IV manually in 2 stages.
mod[["1. stage"]] <- lm(s ~ q4, data = ak91)
ak91$shat <- predict(mod[["1. stage"]])
mod[["2. stage"]] <- lm(lnw ~ shat, data = ak91)</pre>
```


Running IV estimation in R

- Several options (like always with R! 😔)
- Will use the iv_robust function from the estimatr package.
- *Robust*? Computes standard errors which are correcting for heteroskedasticity. Details here.
- Notice the predict to get \hat{s} .

```
library(estimatr)
# create a list of models
mod <- list()</pre>
```

```
# standard (biased!) OLS
mod$ols <- lm(lnw ~ s, data = ak91)</pre>
```

```
# IV: born in q4 is TRUE?
# doing IV manually in 2 stages.
mod[["1. stage"]] <- lm(s ~ q4, data = ak91)
ak91$shat <- predict(mod[["1. stage"]])
mod[["2. stage"]] <- lm(lnw ~ shat, data = ak91)</pre>
```


AK91 Results Table

	ols	1. stage	2. stage	2SLS	
(Intercept)	4.995***	12.747***	4.955***	4.955***	
	(0.004)	(0.007)	(0.381)	(0.358)	
S	0.071***			0.074**	
	(0.000)			(0.028)	
q4		0.092***			
		(0.013)			
shat			0.074*		
			(0.030)		
R2	0.117	0.000	0.000	0.117	
RMSE	0.64	3.28	0.68	0.64	
1. Stage F:				48.990	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001					

- 1. OLS likely downward biased (measurement error in schooling)
- First Stage: IV q4 is statistically significant, but small effect: born in q4 has 0.092 years of educ. R² is 0%! But Fstat is large.
- Second stage has same point estimate as 2SLS but different std error (2. stage one is wrong)

Remember the F-Statistic?

• We encountered this before: it's useful to test restricted vs unrestricted models against each other.

Remember the F-Statistic?

- We encountered this before: it's useful to test restricted vs unrestricted models against each other.
- Here, we are interested whether our instruments are *jointly* significant. Of course, with only one IV, that's not more informative than the t-stat of that IV.

Remember the F-Statistic?

- We encountered this before: it's useful to test restricted vs unrestricted models against each other.
- Here, we are interested whether our instruments are *jointly* significant. Of course, with only one IV, that's not more informative than the t-stat of that IV.
- This F-Stat compares the predictive power of the first stage with and without the IVs. If they have very similar predictive power, the F-stat will be low, and we will not be able to reject the H0 that our IVs are **jointly insignificant** in the first stage model.

Additional Control Variables

- We saw a clear time trend in education earlier.
- There are also business-cycle fluctuations in earnings
- We should somehow control for different time periods.
- Also, we can use more than one IV! Here is how:

Additional Control Variables

we keep adding to our `mod` list: mod\$ols_yr <- update(mod\$ols, . ~ . + yob_fct) # previous OLS model # add exogenous vars on both sides of the `/` ! mod[["2SLS_yr"]] <- estimatr::iv_robust(lnw ~ s + yob_fct | q4 + yob_fct, data = ak91, diagnostics = TRUE) # use all quarters as IVs mod[["2SLS_all"]] <- estimatr::iv_robust(lnw ~ s + yob_fct | qob_fct + yob_fct, data = ak91, diagnostics = TRUE</pre>

	ols	2SLS	ols_yr	2SLS_yr	2SLS_all
(Intercept)	4.995	4.955	5.017	4.966	4.592
	(0.004)	(0.358)	(0.005)	(0.354)	(0.251)
S	0.071	0.074	0.071	0.075	0.105
	(0.000)	(0.028)	(0.000)	(0.028)	(0.020)
R2	0.117	0.117	0.118	0.117	0.091
RMSE	0.64	0.64	0.64	0.64	0.65
1. Stage F:		48.990		47.731	32.323
Instruments	none	Q4	none	Q4	All Quarters
Voar of hirth	no	no	MOC	TIOC	VOC

Additional Control Variables

	ols	2SLS	ols_yr	2SLS_yr	2SLS_all
(Intercept)	4.995	4.955	5.017	4.966	4.592
	(0.004)	(0.358)	(0.005)	(0.354)	(0.251)
S	0.071	0.074	0.071	0.075	0.105
	(0.000)	(0.028)	(0.000)	(0.028)	(0.020)
R2	0.117	0.117	0.118	0.117	0.091
RMSE	0.64	0.64	0.64	0.64	0.65
1. Stage F:		48.990		47.731	32.323
Instruments	none	Q4	none	Q4	All Quarters
Year of birth	no	no	yes	yes	yes

_ Adding year controls...

- leaves OLS mostly unchanged
- slight increase in 2SLS estimate

Using all quarters as IV...

- Increases precision of 2SLS estimate a lot!
- Point estimate is 10.5% now!

AK91: Taking Stock - The Quarter of Birth (QOB) IV

- This will produce consistent estimates if
 - 1. The IV predicts the endogenous regressor well.
 - 2. The IV is as good as random / independent of OVs.
 - 3. Can only impact outcome through schooling.
- How does the QOB perform along those lines?

AK91: Taking Stock - The Quarter of Birth (QOB) IV

- This will produce consistent estimates if
 - 1. The IV predicts the endogenous regressor well.
 - 2. The IV is as good as random / independent of OVs.
 - 3. Can only impact outcome through schooling.
- How does the QOB perform along those lines?

- 1. Plot of first stage and high F-stat offer compelling evidence for **relevance**. ✓
- 2. Is QOB **independent** of, say, *maternal characteristics*? Birthdays are not really random there are birth seasons for certain socioeconomic backgrounds. highest maternal schooling give birth in second quarter. (not in 4th!
- 3. Exclusion: What if the youngest kids (born in Q4!) are the disadvantaged ones early on, which has long-term negative impacts? That would mean $E[u|z] \neq 0!$ Well, with QOB the youngest ones actually do better (more schooling and higher wage)!

Mechanics of IV

Identification and Inference

Let's go back to our simple linear model:

 $y=eta_0+eta_1x+u$

where we fear that $Cov(x, u) \neq 0$, x is endogenous.

Conditions for IV

1. first stage or relevance: $Cov(z, x) \neq 0$ 2. IV exogeneity: Cov(z, u) = 0: the IV is exogenous in the outcome equation.

Valid Model (A) vs Invalid Model (B) for IV z

Conditions for IV

- 1. **first stage** or **relevance**: $Cov(z, x) \neq 0$
- 2. IV exogeneity: Cov(z, u) = 0: the IV is exogenous in the outcome equation.

- How does this *identify* β_1 ?
- (How can we express β_1 in terms of population moments to pin it's value down?)

$$egin{aligned} Cov(z,y) &= Cov(z,eta_0+eta_1x+u) \ &= eta_1Cov(z,x)+Cov(z,u) \end{aligned}$$

Under condition 2. above (**IV exogeneity**), we have Cov(z, u) = 0, hence

 $Cov(z,y)=eta_1 Cov(z,x)$

$$egin{aligned} Cov(z,y) &= Cov(z,eta_0+eta_1x+u) \ &= eta_1Cov(z,x)+Cov(z,u) \end{aligned}$$

Under condition 2. above (**IV exogeneity**), we have Cov(z, u) = 0, hence

$$Cov(z,y)=eta_1 Cov(z,x)$$

and under condition 1. (**relevance**), we have $Cov(z, x) \neq 0$, so that we can divide the equation through to obtain

$$eta_1 = rac{Cov(z,y)}{Cov(z,x)}.$$

- β_1 is *identified* via population moments Cov(z, y) and Cov(z, x).
- We can *estimate* those moments via their *sample analogs*

IV Estimator

Just plugging in for the population moments:

$${\hat eta}_1 = rac{\sum_{i=1}^n (z_i - ar z) (y_i - ar y)}{\sum_{i=1}^n (z_i - ar z) (x_i - ar x)}$$

- The intercept estimate is $\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$

IV Estimator

Just plugging in for the population moments:

$${\hat eta}_1 = rac{\sum_{i=1}^n (z_i - ar z)(y_i - ar y)}{\sum_{i=1}^n (z_i - ar z)(x_i - ar x)}$$

- The intercept estimate is $\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$

• Given both assumptions 1. and 2. are satisfied, we say that *the IV estimator is consistent* for β_1 . We write

$$\operatorname{plim}(\hat{eta}_1)=eta_1$$

in words: the *probability limit* of $\hat{\beta}_1$ is the true β_1 .

• If this is true, we say that this estimator is **consistent**.

IV Inference

Assuming $E(u^2|z)=\sigma^2$ the variance of the IV slope estimator is

٦

$$Var({\hat eta}_{1,IV}) = rac{\sigma^2}{n \sigma_x^2
ho_{x,z}^2}$$

- σ_x^2 is the population variance of x,
- σ^2 the one of u, and
- $\rho_{x,z}$ is the population correlation between x and z.

IV Inference

Assuming $E(u^2|z)=\sigma^2$ the variance of the IV slope estimator is

$$Var({\hat eta}_{1,IV}) = rac{\sigma^2}{n\sigma_x^2
ho_{x,z}^2}$$

- σ_x^2 is the population variance of x,
- σ^2 the one of u, and
- $\rho_{x,z}$ is the population correlation between x and z.

You can see 2 important things here:

- 1. Without the term $\rho_{x,z}^2$, this is **like OLS variance**.
- 2. As sample size *n* increases, the **variance decreases**.

IV Variance is Always Larger than OLS Variance

- Replace $ho_{x,z}^2$ with $R_{x,z}^2$, i.e. the R-squared of a regression of x on z:

$$Var({\hat eta}_{1,IV}) = rac{\sigma^2}{n\sigma_x^2 R_{x,z}^2}$$

1. Given $R_{x,z}^2 < 1$ in most real life situations, we have that $Var(\hat{\beta}_{1,IV}) > Var(\hat{\beta}_{1,OLS})$ almost certainly.

IV Variance is Always Larger than OLS Variance

- Replace $ho_{x,z}^2$ with $R_{x,z}^2$, i.e. the R-squared of a regression of x on z:

$$Var({\hat eta}_{1,IV}) = rac{\sigma^2}{n\sigma_x^2 R_{x,z}^2}$$

- 1. Given $R_{x,z}^2 < 1$ in most real life situations, we have that $Var(\hat{\beta}_{1,IV}) > Var(\hat{\beta}_{1,OLS})$ almost certainly.
- 2. The higher the correlation between z and x, the closer their $R_{x,z}^2$ is to 1. With $R_{x,z}^2 = 1$ we get back to the OLS variance. This is no surprise, because that implies that in fact z = x.

So, if you have a valid, exogenous regressor x, you should *not* perform IV estimation using z to obtain $\hat{\beta}$, since your variance will be unnecessarily large.

Returns to Education for Married Women

Consider the following model for married women's wages:

```
\log wage = eta_0 + eta_1 educ + u
```

Let's run an OLS on this, and then compare it to an IV estimate using *father's education*. Keep in mind that this is a valid IV z if

fatheduc and *educ* are correlated
 fatheduc and *u* are not correlated.

Returns to Education for Married Women

data(mroz,package = "wooldridge")
mods = list()
mods\$OLS <- lm(lwage ~ educ, data = mroz)
mods[['First Stage']] <- lm(educ ~ fatheduc, data = subset(mroz, inlf == 1))
mods\$IV <- estimatr::iv_robust(lwage ~ educ | fatheduc, data = mroz)</pre>

	OLS	First Stage	IV
(Intercept)	-0.185	10.237	0.441
	(0.185)	(0.276)	(0.467)
educ	0.109		0.059
	(0.014)		(0.037)
fatheduc		0.269	
		(0.029)	
Num.Obs.	428	428	428
R2	0.118	0.173	0.093

IV Standard Errors

IV with a Weak Instrument

- IV is consistent under given assumptions.
- However, *even if* we have only very small Cor(z, u), we can get wrong-footed
- Small corrleation between *x* and *z* can produce **inconsistent** estimates.

$$ext{plim}({\hat eta}_{1,IV}) = eta_1 + rac{Cor(z,u)}{Cor(z,x)} \cdot rac{\sigma_u}{\sigma_x}$$

IV with a Weak Instrument

- IV is consistent under given assumptions.
- However, *even if* we have only very small Cor(z, u), we can get wrong-footed
- Small corrleation between *x* and *z* can produce **inconsistent** estimates.

$$ext{plim}({\hat eta}_{1,IV}) = eta_1 + rac{Cor(z,u)}{Cor(z,x)} \cdot rac{\sigma_u}{\sigma_x}$$

- Take Cor(z, u) is very small,
- A **weak instrument** is one with only a small absolute value for Cor(z, x)
- This will blow up this second term in the probability limit.
- Even with a very big sample size n, our estimator would *not* converge to the true population parameter β_1 , because we are using a weak instrument.

To illustrate this point, let's assume we want to look at the impact of number of packs of cigarettes smoked per day by pregnant women (*packs*) on the birthweight of their child (*bwght*):

$$\log(bwght)=eta_0+eta_1packs+u$$

We are worried that smoking behavior is correlated with a range of other health-related variables which are in *u* and which could impact the birthweight of the child. So we look for an IV. Suppose we use the price of cigarettes (*cigprice*), assuming that the price of cigarettes is uncorrelated with factors in *u*. Let's run the first stage of *cigprice* on *packs* and then let's show the 2SLS estimates:

```
data(bwght, package = "wooldridge")
mods <- list()
mods[["First Stage"]] <- lm(packs ~ cigprice, data = bwght)
mods[["IV"]] <- estimatr::iv_robust(log(bwght) ~ packs | cigprice, data = bwght, diagnostics = TRUE)</pre>
```

	First Stage	IV
(Intercept)	0.067	4.448
	(0.103)	(0.940)
cigprice	0.000	
	(0.001)	
packs		2.989
		(8.996)
R2	0.000	-23.230
RMSE	0.30	
1. Stage F:		0.121

39 / 41

- The first columns shows: very weak first stage. *cigprice* has zero impact on packs it seems!
- R^2 is zero.
- What is we use this IV nevertheless?

- The first columns shows: very weak first stage. *cigprice* has zero impact on packs it seems!
- R^2 is zero.
- What is we use this IV nevertheless?

- in the second column: very large, positive(!) impact of packs smoked on birthweight.
- Huge Standard Error though.
- An R^2 of -23?!
- F-stat of first stage: 0.121. Corresponds to a p-value of 0.728 : we **cannot** reject the H0 of an insignificant first stage here *at all*.
- So: invalid approach. 🗙

- bluebery.planterose@sciencespo.fr
- � Original Slides from Florian Oswald
- 🗞 Book
- O @ScPoEcon